EXERCISES 6.2 (submit by 22.05.2015)

- 1. Write the Taylor polynomial of degree 2 near (0,0) for the following functions:
 - (a) $f(x, y) = e^{x+y^2}$,
 - (b) $f(x, y) = \sin(x y)$.
- 2. Prove that the ball $B(x,r) = \{y \in \mathbb{R}^n : ||y x|| < r\}$ is convex.
- 3. Let $y = f(x_1, \ldots, x_n)$ be differentiable on B(0, r). Assume that $f_{x_i}(x) = 0$ for all $x \in B(0, r)$ and $i \in \{1, \ldots, n\}$. Prove that f(x) = 0 for all $x \in B(0, r)$. [Hint: use Lagrange's mean value theorem.]
- 4. Find local extrema of the following functions:
 - (a) $z = x^2 + y^3$, (b) $z = x^2 + y^4$.
- 5. Find the maximum and minimum of the function $z = x^2 + y^2 2x + 1$ on the rectangle $D = \{(x, y) : 0 \le x \le 4, 0 \le y \le 2\}.$