EXERCISES 4.2 (submit by 08.05.2015)

All the vector functions in these exercises take values in \mathbb{R}^3 .

- 1. Let $r_1(t)$ and $r_2(t)$ be vector function defined in a neighborhood of t_0 , and there exist limits $\lim_{t\to t_0} r_1(t)$ and $\lim_{t\to t_0} r_2(t)$. Prove that
 - (a) $\lim_{t \to t_0} r_1(t) \cdot r_2(t) = (\lim_{t \to t_0} r_1(t)) \cdot (\lim_{t \to t_0} r_2(t)),$
 - (b) $\lim_{t \to t_0} r_1(t) \times r_2(t) = (\lim_{t \to t_0} r_1(t)) \times (\lim_{t \to t_0} r_2(t)),$

where $r_1(t) \cdot r_2(t)$ is the scalar product of $r_1(t)$ and $r_2(t)$, and $r_1(t) \times r_2(t)$ is the vector product of $r_1(t)$ and $r_2(t)$.

2. Let $r_1(t)$ and $r_2(t)$ be differentiable vector functions. Prove that

$$(r_1(t) \cdot r_2(t))' = r'_1(t) \cdot r_2(t) + r_1(t) \cdot r'_2(t).$$

3. Let r(t) be a differentiable vector function defined on [a, b]. Let ||r(t)|| = 1 for all $t \in [a, b]$. Prove that the vectors r(t) and r'(t) are orthogonal for all $t \in (a, b)$, i.e.,

$$r(t) \cdot r'(t) = 0.$$

This has a simple geometric interpretation: the velocity of a particle moving on a sphere is always orthogonal to the radius. [Hint: Differentiate $||r(t)||^2$ using previous exercise.]

4. Let r(t) be a differentiable vector function on [a, b], and $r(t) \neq 0$ for all t. Let $r_0(t) = \frac{r(t)}{\|r(t)\|}$ be the radial unit vector. Prove that

$$r'(t) = (r_0(t) \cdot r'(t)) r_0(t) + ||r(t)||r'_0(t).$$

Note that by the previous exercise $r_0(t)$ is orthogonal to $r'_0(t)$. Thus, the formula above is the orthogonal decomposition of the velocity r'(t) into radial $((r_0(t) \cdot r'(t)) r_0(t))$ and transverse $(||r(t)|| r'_0(t))$ components.