EXERCISES 1.2 (submit by 17.04.2015)

In all the exercises, V is a finite-dimensional inner product space.

- 1. Let $u, v \in V$ be linearly dependent. Prove that $|\langle u, v \rangle| = ||u|| \cdot ||v||$.
- 2. Prove that for any real numbers x_1, \ldots, x_n ,

$$(x_1 + \ldots + x_n)^2 \le n (x_1^2 + \ldots + x_n^2)$$

When is the inequality strict?

- 3. Let $v \in V$ such that $\langle u, v \rangle = 0$ for all $u \in V$. Prove that $v = \overrightarrow{0}$.
- 4. Let $u, v \in V$ be orthogonal. Prove that $||u + v||^2 = ||u||^2 + ||v||^2$ (The Pythagoras theorem).
- 5. Let $v_1, \ldots, v_n \in V$ be an orthogonal system, i.e., $v_i \perp v_j$ for all $i \neq j$. Prove that v_1, \ldots, v_n are linearly independent.
- 6. Let S be a subset of V (not necessarily a vector subspace). Define the orthogonal complement of S by

$$S^{\perp} = \{ v \in V : \langle u, v \rangle = 0 \text{ for all } u \in S \}.$$

Prove that S^{\perp} is a vector subspace of V.