
Prof. Ph.D. A. Sapozhnikov Mathematics 2 (12-PHY-BIPMA2)

EXAM SOLUTIONS, 20.07.2015

1. (4 points) The matrix of a linear operator T on R2 in the basis {(1, 0), (0, 1)} is

AT =

(
1 1
1 1

)
. Is T ≥ 0? Is T > 0? Justify your answers.

Answer: T is non-negative, but not positive.

Solution 1. Let e1 = (1, 0), e2 = (0, 1), then T (e1) = T (e2) = (1, 1). By the linearilty
of T , for all v = (v1, v2), T (v) = v1T (e1) + v2T (e2) = (v1 + v2, v1 + v2), and
〈T (v), v〉 = (v1 + v2)v1 + (v1 + v2)v2 = (v1 + v2)

2 ≥ 0. Thus, T ≥ 0. Let v = (1,−1).
Then 〈T (v), v〉 = 0. Thus, T is not positive.

Solution 2. Note that the given basis is orthonormal, and the matrix of T is sym-
metric in this basis. Thus, T is self-adjoint. In particular, T ≥ 0 iff all its eigenvalues
are non-negative, and T > 0 iff all its eigenvalues are strictily positive. The char-

acteristic polynomial of T is

∣∣∣∣ 1− λ 1
1 1− λ

∣∣∣∣. Its roots are λ1 = 0, λ2 = 2. Thus,

T ≥ 0, but not > 0.

2. (4 points) For vectors u = (u1, u2) and v = (v1, v2) in R2 and x ∈ R, let

f(u, v) = u1v1 + u1v2 + u2v1 + xu2v2.

Find all x, for which f defines an inner product on R2.

Answer: x > 1.

Solution. We need to check that (a) f(u, u) ≥ 0 for all u ∈ R2, and f(u, u) = 0 iff
u = (0, 0), (b) for all u, v, w ∈ R2, f(u+v, w) = f(u,w)+f(v, w), (c) for all u, v ∈ R2

and α ∈ R, f(αu, v) = αf(u, v), and (d) for all u, v ∈ R2, f(u, v) = f(v, u).

The properties (b-d) are satisfied for all x ∈ R by the definition of f .

The property (a) states that the symmetric quadratic form f(u, u) is positive
definite. By the Sylvester’s criterion, a symmetric quadratic form Q(u, u) =

a11u
2
1 + 2a12u1u2 + a22u

2
2 is positive definite iff a11 > 0 and

∣∣∣∣ a11 a12
a12 a22

∣∣∣∣ > 0. Thus,

f satisfies (a) iff

∣∣∣∣ 1 1
1 x

∣∣∣∣ > 0, which holds iff x > 1.

3. (4 points) Does the limit

lim
(x,y)→(0,0)

x3 + y2

x2 + y2

exist?

Answer: no.



Solution. Let f(x, y) = x3+y2

x2+y2
. If there exists L = lim(x,y)→(0,0) f(x, y), then for

any choice of α = α(t) and β = β(t) with limt→0(α(t), β(t)) = (0, 0), the limit
limt→0 f(α(t), β(t)) is the same and equals L.

For α1(t) = t, β1(t) = 0, limt→0 f(α1(t), β1(t)) = limt→0
t3

t2
= 0.

For α2(t) = 0, β2(t) = t, limt→0 f(α2(t), β2(t)) = limt→0
t2

t2
= 1.

Since the two limits are different, the limit of f(x, y) at (0, 0) does not exist.

4. (4 points) Let f(x, y) = ex
2+sin y. Compute fxyx.

Answer: ex
2+sin y · (4x2 + 2) cos y.

Solution.

fx = ex
2+sin y · 2x,

fxy = ex
2+sin y · 2x · cos y,

fxyx = ex
2+sin y · (2x)2 · cos y + ex

2+sin y · 2 · cos y.

5. (4 points) Let f(x, y) = x2y. Find a unit vector ` ∈ R2 for which |D`(1, 1)| is
maximal.

Answer: ( 2√
5
, 1√

5
) or (− 2√

5
,− 1√

5
)

Solution 1. Let ` = (a, b) ∈ R2 with a2 + b2 = 1. Then,

D`(x, y) = fxa+ fyb = 2xya+ x2b,

and D`(1, 1) = 2a+ b. By the Cauchy-Schwarz inequality,

|2a+ b| ≤
√

22 + 12 ·
√
a2 + b2 =

√
5,

with the equality attained for a = 2√
5
, b = 1√

5
or a = − 2√

5
, b = − 1√

5
.

Remark 0.1. Instead on the Cauchy-Schwarz inequality, one could use the method
of Lagrange multipliers.

Solution 2. It is known that the gradient of f gives the direction in which the
change of f is the largest. Thus, |D`(1, 1)| is maximal for ` = ± ∇f(1,1)

‖∇f(1,1)‖ . Since,

∇f = (2xy, x2), the optimal choice of ` is ` = ± (2,1)√
22+12

= ±( 2√
5
, 1√

5
).

6. (4 points) Let z = x2 + y2, where x = st and y = s
t
. Compute ∂z

∂s
and ∂z

∂t
.

Answer: zs = 2st2 + 2 s
t2
, zt = 2s2t− 2 s2

t3
.
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Solution. Using chain rule,

zs = zxxs + zyys = 2xt+ 2y
1

t
= 2st2 + 2

s

t2
,

zt = zxxt + zyyt = 2xs+ 2y(− s
t2

) = 2s2t− 2
s2

t3
.

7. (4 points) Find the maximum and minimum of z = x2 − 2x + y2 on the circle
x2 + y2 = 1.

Answer: 3 and −1.

Solution. First note that the circle x2 + y2 = 1 is a closed and bounded set in R2,
thus z attains its maximum and minimum at some points of the circle.

To find the maximum and minimum of z, we use the method of Lagrange multipliers.
For λ ∈ R, let F (x, y) = x2 − 2x + y2 − λ(x2 + y2 − 1). If z attains its maximum
or minimum at (x∗, y∗) on the circle x2 + y2 = 1, then Fx(x∗, y∗) = Fy(x∗, y∗) = 0.
Thus, the points where z attains its maximum and minimum, are solutions to the
following system of equations for some λ ∈ R:

2x− 2− λ2x = 0,
2y − λ2y = 0,
x2 + y2 = 1.

From the second equation, either y = 0 or λ = 1. By the first equation λ 6= 1, thus
y = 0. By the third equation, x = ±1. Thus, the maximum and minimum of z are
attained at (1, 0) and (−1, 0). We compute, z(1, 0) = −1, z(−1, 0) = 3.

8. (4 points) Let s(x) =
∑∞

n=1
x2

x2+n2 . Is s′(x) continuous on R?

Answer: yes.

Solution. First note that the given series converges for every x ∈ R, since for each
n ≥ 1, x2

x2+n2 ≤ x2

n2 , and
∑∞

n=1
1
n2 < +∞.

Let un(x) = x2

x2+n2 . We first show that s(x) is differentiable for all x ∈ R, and
s′(x) =

∑∞
n=1 u

′
n(x). For this, it suffices to show that for every a > 0, the series∑∞

n=1 u
′
n(x) converges uniformly on [−a, a]. We compute

u′n(x) =
2x · (x2 + n2)− x2 · 2x

(x2 + n2)2
=

2xn2

(x2 + n2)2
.

Thus,

sup
x∈[−a,a]

|u′n(x)| ≤ 2an2

n4
=

2a

n2
.
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Since the series
∑

n≥1
2a
n2 converges, by the Weierstrass theorem (M -test), the series∑∞

n=1 u
′
n(x) converges uniformly on [−a, a] for any choice of a > 0. We conclude

that s(x) is differentiable for all x ∈ R, and

s′(x) =
∞∑
n=1

2xn2

(x2 + n2)2
.

Finally, notice that the functions u′n(x) = 2xn2

(x2+n2)2
are continuous on R (and, in

particular, on [−a, a] for any a > 0). Thus, for any a > 0, s′(x) is the sum of a
uniformly convergent series of continuous functions, which implies that s′(x) is also
continuous on [−a, a]. Since a > 0 is arbitrary, s′(x) is continuous on R.

9. (4 points) Is f(x, y) =
(√
|x|+

√
|y|
)2

a norm on R2?

Answer: no.

Solution. The function f defines a norm on R2 if (a) for all (x, y) ∈ R2, f(x, y) ≥ 0
and f(x, y) = 0 iff (x, y) = (0, 0), (b) for all (x, y) ∈ R2 and λ ∈ R, f(λx, λy) =
|λ|f(x, y), (c) for all (x1, y1), (x2, y2) ∈ R2, f(x1 +x2, y1 +y2) ≤ f(x1, y1)+f(x2, y2).

Properties (a-b) are immediate from the definition of f . However, property (c) is
violated. Indeed, let (x1, y1) = (1, 0), (x2, y2) = (0, 1), then f(x1 + x2, y1 + y2) =
f(1, 1) = 4, and f(x1, y1) + f(x2, y2) = 1 + 1 = 2.

10. (4 points) Find the general solution to (x+ y)2y′ = 1.

Answer: y = arctan(x+ y) + C or, equivalently, x+ y = tan(y − C).

Solution. This is an equation of the form y′ = f(x+y), thus we make a substitution
z = x + y. Then, dz = dx + dy, and the equation becomes z2(dz − dx) = dx, or,
equivalently,

z2dz

1 + z2
= dx.

Integration gives
z − arctan z = x+ C,

which in the original variables gives the general solution y = arctan(x+ y) +C, or,
equivalently, x+ y = tan(y − C).

11. (4 points) Find the general solution to y′′ − y = 2x.

Answer: y = −2x+ C1e
x + C2e

−x.

Solution. This is a linear equation, thus its general solution equals to the sum of its
particular solution and the general solution to the homogeneous equation y′′−y = 0.

It is easy to see that y1 = −2x is a particular solution to y′′ − y = 2x. The general
solution to y′′−y = 0 is y2 = C1e

x+C2e
−x. Thus, the general solution to y′′−y = 2x

is y = −2x+ C1e
x + C2e

−x.

4


