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SYLLABUS

1 Systems of linear equations

• Consistent and inconsistent systems. Equivalent systems. Elementary operations
with systems. Matrix and augmented matrix of the system. Elementary row oper-
ations with matrices. Row echelon form and reduced row echelon form. Gaussian
elimination. Homogeneous system. Closedness of the solutions set to a homogeneous
system under addition and multiplication by scalars.

2 Matrices

• Rank of matrix as maximal number of linearly independent rows and maximal num-
ber of linearly independent columns. Rank is preserved under elementary row and
column transformations. Computation of the rank of a matrix using Gaussian elim-
ination.

Theorem: Rank of a linear map equals to rank of its matrix (in some bases), i.e.,
rank(T ) = rank(AT ). Corollary: A matrix A ∈Mn(F ) is invertible if and only if its
rank is n.

Computation of inverse matrix using Gaussian elimination.

Theorem: For all A,B ∈ Mn(F ), rank(AB) ≤ min (rank(A), rank(B)). Corollary:
Two matrices A,B ∈ Mn(F ) are both invertible if and only if their product AB is
invertible. Example of rank(AB) 6= rank(BA).

Dimension of solution set to homogeneous system of equation as the number of
unknowns minus the rank of the system matrix.

• Permutations. Row notation. Cycle decomposition. Composition of permutations.

Transposition. Adjacent transposition. Properties: (a) each permutation can be
written as a composition of transpositions, (i1 . . . ik) = (i1ik)(i1ik−1) . . . (i1i3)(i1i2),
(b) each transposition can be written as a composition of an odd number of adjacent
transpositions, (ij) = (j − 1 j) . . . (i+ 1 i+ 2)(i i+ 1) . . . (j − 2 j − 1)(j − 1 j).

Signature (or sign) of a permutation. Inversion pair.

Theorem: sgn(σ) = (−1)number of inversion pairs for σ.

• Determinant of a matrix. Multilinear function. Alternating function.

Proposition: If f : V n → F is multilinear and alternating, then for any σ ∈ Sn,
f(vσ(1), . . . , vσ(n)) = sgn(σ)f(v1, . . . , vn).

Theorem: Let v1, . . . , vn be a basis of V . There exists a unique multilinear alter-
nating function f : V n → F with f(v1, . . . , vn) = 1.

Theorem: Let f : V n → F be multilinear and alternating, v1, . . . , vn a basis of V ,
and f(v1, . . . , vn) 6= 0. Then any u1, . . . , un ∈ V are linearly independent if and only
if f(u1, . . . , un) 6= 0.



Determinant of a matrix as the unique multilinear alternating function of rows
det : (F n)n → F with det(e1, . . . , en) = 1. Formulas for determinants for n = 2, 3.

Properties: (a) A is invertible iff det(A) 6= 0, (b) det(AB) = det(A) · det(B), (c)
det(A) is the unique alternating multilinear function of columns of A such that
det(In) = 1, (d) determinant does not change if a row multiplied by a scalar is
added to another row, (e) det(αA) = αndet(A).

Theorem (Laplace expansion): For any i, j ∈ {1, . . . , n}, (a) det(A) =∑n
k=1(−1)k+jαkjdetA(k|j) (expansion along j-th column), (b) det(A) =∑n
k=1(−1)i+kαikdetA(i|k) (expansion along i-th row).

Inverse matrix. Cramer’s rule for solving systems of linear equations.

3 Invariant vector subspaces

• Change of basis. Proposition: Let T : U → V be a linear map. If (e′1, . . . , e
′
n) =

(e1, . . . , en) · P are two bases of U , (f ′1, . . . , f
′
m) = (f1, . . . , fm) · Q two bases of V ,

then A
(e′,f ′)
T = Q−1 · A(e,f)

T · P . Corollary: For any A ∈ Mm,n(F ) with rank(A) = r,
there exist invertible matrices P ∈Mn(F ) and Q ∈Mm(F ) such that Q−1 ·A ·Q =(

Ir 0n−r,r
0m−r,r 0m−r,n−r

)
.

Invariant subspace. Examples. Restriction of linear map to invariant subspace and
its matrix.

Eigenvectors and eigenvalues of linear operators. Spectrum of linear operator. Char-
acteristic polynomial. Independence of characteristic polynomial of basis. Similar
matrices. Theorem: λ0 ∈ SpecT iff PT (λ0) = 0, i.e., eigenvalues are roots of the
characteristic polynomial.

Theorem: Eigenvectors corresponding to different eigenvalues are linearly indepen-
dent.

Simple spectrum. Theorem: If T : U → U has a simple spectrum, then there
exists a basis e1, . . . , en ∈ U such that AT = diag(λ1, . . . , λn). One says that T is
diagonalizable.

Examples of non-diagonalizable operators: (a) characteristic polynomial can be re-

solved not in every field, algebraically closed fields, (b) AT =

(
2 1
0 2

)
.

Algebraic and geometric multiplicities of eigenvalues. Eigenspace. Geometric mul-
tiplicity is at most algebraic multiplicity. Theorem: An operator (resp., its matrix)
is diagonalizable if and only if for every eigenvalue of T , its geometric and algebraic
multiplicities coincide.

4 Inner product spaces

• Definition of the inner product space. Euclidean and unitary spaces. Examples:
F n, C([0, 1],C). Norm of a vector. Cauchy-Schwarz inequality. Cauchy-Schwarz
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inequality in F n and C([0, 1],C). Angle between two vectors in a Euclidean space.
Triangle inequality for norms. Distance between two vectors. Properties of the
distance.

• Orthogonality of two vectors, u ⊥ v. Properties of ⊥. Orthogonal system of vectors.
Orthonormal system of vectors.

Theorem: Every orthogonal system is linearly independent. Corollary: If dim(V ) =
n, then every orthogonal system contains at most n vectors.

Gram-Schmidt orthogonalization. Theorem (Gram-Schmidt): If u1, . . . , un ∈ V are
linearly independent, then there exist v1, . . . , vn ∈ V orthonormal such that for all
k ≤ n, Span{v1, . . . , vk} = Span{u1, . . . , uk}. Corollary: Every inner product space
has an orthonormal basis.

Properties of ONBs. If e1, . . . , en is an ONB of V , then (a) ∀u ∈ V ∃!u1, . . . , un ∈ F
such that u = u1e1+ . . .+unen, and ui = 〈u, ei〉, (b) for all u = u1e1+ . . .+unen, v =
v1e1 + . . .+ vnen ∈ V , 〈u, v〉 = u1v1 + . . . unvn, (c) ‖u‖2 = |u1|2 + . . .+ |un|2.

• Isomorphism of inner product spaces. Theorem: Any two finite dimensional inner
product spaces with equal dimensions are isomorphic.

• Orthogonal complement of a set ∅ 6= S ⊆ V , S⊥. Properties of ⊥: (a) {−→0 }⊥ = V ,

V ⊥ = {−→0 }, (b) S⊥ is a vector subspace of V (even if S is not), (c) S⊥ = (SpanS)⊥,
(d) (S⊥)⊥ = SpanS.

Theorem: If U is a vector subspace of V (V is finite dimensional), then V = U⊕U⊥.
Corollary: Any vector v ∈ V can be decomposed uniquely as v = vU + vU⊥ , where
vU ∈ U and vU⊥ ∈ U⊥.

Orthogonal projection, PU . Properties: (a) PU is linear, (b) P 2
U = PU , (c) PU⊥ =

id−PU , (d) for all v1, v2 ∈ V , 〈PU(v1), v2〉 = 〈v1, PU(v2)〉, (e) KerPU = U⊥, ImPU =
U . Example (projection on the line spanned by vector u): If U = Span{u}, then

PU(v) = 〈v,u〉
‖u‖2 u.

Distance between sets S1, S2 ⊆ V , ρ(S1, S2). Proposition: If U is a vector subspace
of V and v ∈ V , then ρ(v, U) = ‖vU⊥‖ = ‖PU⊥(v)‖.

• Dual space or the space of linear functionals on V , V ∗ = L(V, F ). Example: for
any u ∈ V , the map fu : V → F defined by fu(v) = 〈v, u〉 is in V ∗. Theorem
(Riesz representation theorem): If V is a finite dimensional inner product space,
then for any f ∈ V ∗ there exists unique u ∈ V such that f = fu, i.e., for all v ∈ V ,
f(v) = 〈v, u〉.
Theorem: For any linear map T : V → V there exists unique linear map T ∗ : V → V
such that for all u, v ∈ V , 〈T (u), v〉 = 〈u, T ∗(v)〉. T ∗ is the adjoint operator of
T . Properties: (a) (T ∗)∗ = T , (b) (αT )∗ = αT ∗, (c) (T1 + T2)

∗ = T ∗1 + T ∗2 , (d)
(T1T2)

∗ = T ∗2 T
∗
1 , (e) if e1, . . . , en is an ONB of V , then AT ∗ = (AT )t.

• Normal operator, T ∗T = TT ∗. Proposition: T is normal iff the matrix AT of T in

any ONB of V satisfies ATA
t

T = A
t

TAT .
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Theorem: If T is normal and v is an eigenvector of T corresponding to an eigenvalue
λ, then v is also an eigenvector of T ∗ corresponding to the eigenvalue λ.

Canonical form of normal operator in unitary space. Theorem: If V is a finite
dimensional unitary space and T is a linear operator on V , then T is normal iff
there exists an ONB e1, . . . , en of V such that all ei’s are eigenvectors of T . (In
particular, AT is diagonal in this basis.)

Canonical form of normal operator in Euclidean space. Theorem: If V is a finite
dimensional Euclidean space and T is a linear operator on V , then T is normal
iff there exists an ONB of V such that the matrix of T in this basis has the block

diagonal form with blocks either of size 1, λi ∈ R, or of size 2, ri

(
cosϕi sinϕi
− sinϕi cosϕi

)
with ri > 0. (The blocks of size 1 correspond to deformation along corresponding
basis vectors, the block of size 2 correspond to rotations of planes spanned by pairs
of corresponding basis vectors by angle ϕi combined with deformation ri.) Example:

AT =

(
0 1
−1 0

)
- matrix of a normal operator corresponding to rotation clockwise

by π
2
.

• Self-adjoint operator, T ∗ = T . Example: PU . Self-adjoint operators are normal.

Hermitian matrix, A
t

= A, symmetric matrix, At = A. Proposition: T is self-
adjoint iff its matrix is Hermitian in any ONB. Properties: If T1, T2 are self-adjoint
then T 2

1 , T1 + T2, αT1, T1T2 + T2T1 are also self-adjoint, but T1T2 is not necessarily
self-adjoint.

Theorem: All eigenvalues of a self-adjoint operator are real. In particular, charac-
teristic polynomial is real.

Theorem: T is self-adjoint iff there exists an ONB in which AT is diagonal and real.

• Skew-adjoint operator, T ∗ = −T . Skew-adjoint operators are normal.

Theorem: All eigenvalues of a skew-adjoint operator are purely imaginary.

Theorem: T is skew-adjoint iff there exists an ONB in which AT is diagonal with
purely imaginary entries.

Proposition: T is skew-adjoint iff iT is self-adjoint.

Theorem: For any T ∈ L(V, V ), there exist unique T1, T2 self-adjoint such that
T = T1 + iT2. Moreover, T is normal iff T1T2 = T2T1. Remark: Note the analogy
with complex numbers: every complex number can be written in a unique way as
the sum of a real number an a purely imaginary number.

• Unitary operator, T ∗ = T−1. Unitary operators in Euclidean spaces are called
orthogonal. Unitary operators are normal.

Proposition: T is unitary iff for all u, v ∈ V , 〈T (u), T (v)〉 = 〈u, v〉. Remark: The
proposition states that unitary operators are isomorphisms of unitary spaces on
themselves.

Theorem: T is unitary iff T maps some (or all) ONB to ONB.
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Unitary matrix, A
t

= A−1, orthogonal matrix, At = A. Theorem: T is unitary iff in
some ONB AT is unitary. Proposition: If A is unitary, then its rows form an ONB
in the space of rows Cn, and its columns form an ONB in Cn.

Theorem: If T is unitary, then all its eigenvalues have modulus 1, and |detAT | = 1.

Theorem: If T is unitary, then there exists an ONB such that AT is diagonal with all
entries on the diagonal being of modulus 1. If T is orthogonal, then there exists an
ONB such that AT is block diagonal with blocks of size 1 being either 1 or −1 and

blocks of size 2 being

(
cosϕi sinϕi
− sinϕi cosϕi

)
. (Canonical form of unitary/orthogonal

operator.) Corollary: Every unitary (resp., orthogonal) matrix is unitary (resp., or-
thogonally) equivalent to a unitary (resp., orthogonal) matrix in the canonical form.
Example: List of all 6 canonical forms of orthogonal operators in R3. (These are
the only transformations of R3 which preserve lengths and angles between vectors.)

• Positive or positive-definite operator, T > 0. Non-negative or non-negative definite
operator, T ≥ 0. Properties: (a) if T1, T2 ≥ 0, α1, α2 ≥ 0 reals, then α1T1+α2T2 ≥ 0,
(b) for any T ∈ L(V, V ), TT ∗ ≥ 0, (c) if T = T ∗ then T 2 ≥ 0, (d) if T ≥ 0 then all its
eigenvalues are non-negative (spec(T ) ⊆ [0,+∞)), (e) if T = T ∗ and all eigenvalues

of T are non-negative, then T ≥ 0, (f) if T ≥ 0, then T > 0 iff kerT = {−→0 }.
Theorem (Square root of a non-negative operator): For any T ≥ 0 there exists
unique S ≥ 0 such that S2 = T , and S > 0 iff T > 0.

Theorem (Polar decomposition): For any T ∈ L(V, V ), there exist R ≥ 0 and
unitary operator S such that T = RS. Remark: R is uniquely defined. S is uniquely
defined if T is non-degenerate, i.e., kerT = {−→0 }. Remark: Note the analogy with
trigonometric form of complex numbers z = reiϕ.

5 Bilinear forms

• Definition of bilinear form, B(·, ·). Examples: (a) B(u, v) =
∑n

i,j=1 ai,juivj, u, v ∈
F n, (b) B(f, g) =

∫ 1

0
K(t)f(t)g(t)dt, K, f, g ∈ C[0, 1], (c) B(u, v) = f(u)g(v), u, v ∈

V , f, g ∈ V ∗, (d) inner product in Euclidean space. Coordinate representation:
If e1, . . . , en is a basis of V , then B(u, v) =

∑n
i,j=1 uivjB(ei, ej). Gram matrix

of B: AB = (B(ei, ej))
n
i,j=1. Change of basis: if (e′1 . . . e

′
n) = (e1 . . . en) · C then

A′B = CtABC. Congruent matrices. Prop: Two matrices are congruent iff they
represent the same bilinear form in different bases. Example: second order curves
in the plane.

• Symmetric bilinear form, B(u, v) = B(v, u). Skew-symmetric bilinear form,
B(u, v) = −B(v, u). Example: in R2, u1v1 + u2v2 and u1v2 − u2v1. Proposition: If
B is symmetric then its matrix in any basis is symmetric, AB = AtB.

Theorem (Sylvester’s law of intertia): (1) If B is a symmetric bilinear form in a
unitary space V , then there exists a basis of V in which the matrix of B is diagonal
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with only 1’s and 0’s on the diagonal, namely, there exists e1, . . . , en basis of V and

r ≤ n such thatB(ei, ej) =


1 i = j ≤ r
0 i = j > r
0 i 6= j

. In this basisB(u, v) = u1v1+. . .+urvr.

(2) If B is a symmetric bilinear form in a Euclidean space V , then there exists a basis
of V in which the matrix of B is diagonal with only 1’s, −1’s, and 0’s on the diagonal,
namely, there exists e1, . . . , en basis of V and r < s ≤ n such that B(ei, ej) =

1 i = j ≤ r
−1 r < i = j ≤ s
0 i = j > s
0 i 6= j

. In this basis B(u, v) = u1v1+. . .+urvr−ur+1vr+1−. . .−usvs.

Moreover, the number of 1’s, −1’s, and 0’s is independent of the basis in which the
matrix is of the above form. Number of 1’s minus number of −1’s is the signature
of B.

• Quadratic form associated to a symmetric bilinear form B, B(v, v). Theorem:
Any quadratic form is associated to a unique symmetric bilinear form. (Here V
is either Euclidean or unitary.) Polarization of the quadratic form: B(u, v) =
1
2

(B(u+ v, u+ v)−B(u, u)−B(v, v)).

• Definition of sesquilinear form. Example: inner product in unitary space. Hermitian
form (or symmetric sesquilinear form), B(u, v) = B(v, u). Coordinate representa-
tion as for bilinear forms, AB. Remark: B is Hermitian iff AB is Hermitian (in any
basis). Change of basis: if (e′1 . . . e

′
n) = (e1 . . . en) · C then A′B = CtABC.

Theorem: If B is a Hermitian form in a unitary space V , then there exists a basis of
V in which the matrix of B is diagonal with only 1’s, −1’s, and 0’s on the diagonal,
namely, there exists e1, . . . , en basis of V and r < s ≤ n such that B(ei, ej) =

1 i = j ≤ r
−1 r < i = j ≤ s
0 i = j > s
0 i 6= j

. In this basisB(u, v) = u1v1+. . .+urvr−ur+1vr+1−. . .−usvs.

Moreover, the number of 1’s, −1’s, and 0’s is independent of the basis in which the
matrix is of the above form.

• Quadratic form associated to a Hermitian form B, B(v, v). Any quadratic
form is associated to a unique Hermitian form B. Polarization of
the quadratic form: B(u, v) = 1

2
(B(u+ v, u+ v)−B(u, u)−B(v, v)) +

i
2

(B(u+ iv, u+ iv)−B(u, u)−B(v, v)).

• Positive definite quadratic form, B(v, v) > 0 for v 6= 0. Remark: B is positive
definite iff there exists a basis in which AB (matrix of the associated bilinear form)
is the identity matrix.

Proposition: B is positive definite quadratic form on V iff its polarization B (sym-
metric bilinear form if V is Euclidean, resp., Hermitian if V is unitary) defines an
inner product on V . Thus, bilinear and sesquilinear forms are generalizations of
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inner products in Euclidean and, resp., unitary spaces. Example: Minkowski space
(over R), B(v, v) = v21 + v22 + v23 − v24.

6 Other algebraic structures

• Semigroup. Examples: (a) (N,+), (b) all maps from a set X to itself, M(X),
with the operation of composition of maps ◦, (c) set of all subsets of a set X with
operation of intersection (or union), (P (X),∩), (P (X),∪).

• Monoid, (S, ·, e). Examples: (a) (M(X), ◦, id), (b) (P (X),∩, X) and (P (X),∪, ∅).

• Group. Uniqueness of the inverse element, a−1. Commutative (or Abelian) group.
Examples: (a) (Z,+, 0) is Abelian, (b) (Z, ·) is not a group, (c) (Q, ·) is not a
group, but (Q \ {0}, ·, 1) is Abelian group, (d) the group of integers modulo n ∈ N,
Zn = Z/nZ, (e) cyclic group, an, n ∈ Z, (f) general linear group, GL(n,R) (all in-
vertible matrices with operation of multiplication), (g) special linear group, SL(n,R)
(all matrices with determinant 1 with operation of multiplication), (h) orthogonal
group, O(n) (all distance preserving linear transformations of Rn with operation of
composition, or, equivalently, all orthogonal n × n matrices with real entries with
operation of multiplication), (i) special orthogonal group or rotation group, SO(n)
(all orthogonal matrices with determinant 1 with operation of multiplication), (j)
symmetric group of degree n, Sn (group of permutations of {1, . . . , n}).

• Subgroup. Example: SL(n,R) is a subgroup of GL(n,R). Isomorphism of two
groups, (G, ∗) ∼= (G′, ◦). Proposition: If ϕ is an isomorphism from (G, ∗, e) to
(G′, ◦, e′), then (a) ϕ(e) = e′, (b) for all a ∈ G, ϕ(a−1) = ϕ(a)−1, (c) ϕ−1 is an
isomorphism from (G′, ◦, e′) to (G, ∗, e).

• Ring. Examples of rings: (a) (Q,+, ·) and (Z,+, ·), (b) (Mn,n(R),+, ·), (c) if
(R,+, ∗), where ∗ is defined as x ∗ y = 0 for all x, y ∈ R.

7 Functions of several variables

• Definition of y = f(x1, . . . , xn). Other notation: z = f(x, y), w = f(x, y, z). ‖x‖ =√
x21 + . . .+ x2n. Open ball B(x, r). Limit of f at a ∈ Rn, limx→a f(x). (Mind: f(a)

may be undefined.) Properties of the limit.

Proposition: Let u1 = u1(t), . . . , un = un(t) be real functions defined on an
interval containing t0 ∈ R. If for all i ∈ {1, . . . , n}, limt→t0 ui(t) = ai and
limx→a f(x) = L, then limt→t0 f(u1(t), . . . , un(t)) = L. (This is useful in proving
non-existence of the limit: if for two different choices of ui’s, the corresponding lim-
its limt→t0 f(u1(t), . . . , un(t)) are different, then the limit of f at a does not exist.)

Examples: (a) f(x, y) = x2y
x4+y2

, for x2 + y2 > 0 (limit at 0 along every line is 0, but

the limit at 0 does not exist), (b) f(x, y) = xy
x2+y2

, for x2 + y2 > 0.
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Proposition: If f(x1, . . . , xn) = g(‖x‖) for some g : R → R, then limx→0 f(x) =
limr→0+ g(r). Such f ’s are called isotropic. Example: lim(x,y)→(0,0)(x

2 + y2) ln(x2 +
y2) = limr→0+ r ln r = 0.

• Continuous function at a ∈ Rn. Continuous function on D. Examples: (a) poly-
nomials, (b) rational functions (in their domains). Bounded set. Closed set. Ex-
amples: (a) B(x, r) bounded but not closed, (b) B(x, r) bounded and closed, (c)
S(x, r) bounded and closed.

Theorem: If a function is continuous on a bounded and closed set D, then it is
bounded on D and attains its maximal and minimal values at some points of D.

Connected set. Theorem: If f is continuous on a connected set D, then for all
x, y ∈ D, f takes any value between f(x) and f(y) at some points of D.

8 Differential calculus of functions of several vari-

ables

• Partial derivative of f with respect to xi at a ∈ Rn, ∂f
∂xi

(a) = fxi(a) = f ′xi(a) =
∂
∂xi
f(a). Special notation in 2 and 3 dimensions, e.g., fx, fy, wz. Properties of

partial derivative with respect to xi.

• Geometric interpretation of fx in two dimensions. Tangent plane to z =
f(x, y) at (a, b), z = f(a, b) + fx(a, b)(x − a) + fy(a, b)(y − b). Examples: (a)

f(x, y) =

{
1 xy 6= 0
0 xy = 0

(the tangent plane at (0, 0) is z = 0), (b) f(x, y) ={ xy
x2+y2

x2 + y2 > 0

0 x = y = 0
(fx(a, b) and fy(a, b) exist for all (a, b) ∈ R2, but f is discon-

tinuous at 0).

• Differentiable function at a ∈ Rn. Theorem: If all fxi(a) are continuous at
a, then f is differentiable at a. Continuously differentiable function. Example:

f(x, y) =

{
(x2 + y2) sin 1

x2+y2
x2 + y2 > 0

0 x = y = 0
is differentiable at (0, 0), but fx, fy

are not continuous. Remark: If f is differentiable at a, then f is continuous at a.

• Chain rule. Theorem: If f is a differentiable function of x1, . . . , xn, where xi =
xi(t1, . . . , tm) are functions of t1, . . . , tm such that ∂xi

∂tj
exist for all i, j, then there

exist ∂f
∂tj

for all j, and ∂f
∂tj

= ∂f
∂x1

∂x1
∂tj

+ . . .+ ∂f
∂xn

∂xn
∂tj

. Remark: Differentiability of f is

crucial, although only existence of ∂f
∂xi

appears in the chain rule.

• Directional derivative, ∂f
∂`

(a) = D`f(a). Geometric interpretation.

Theorem: If f is differentiable at a, then for any direction `, there exists D`f(a),
and D`f(a) = (fx1(a), . . . , fxn(a)) · `. Gradient of f , ∇f(x).
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Theorem: If f is differentiable at a, then the maximum of D`f(a) over all unit
vectors ` equals ‖∇f(a)‖ and it is attained by a vector with the same direction as
∇f(a). In particular, the gradient of f does not depend on the choice of coordinates.

• Higher order derivatives, fxixj = (fxi)xj = ∂2

∂xj∂xi
f = ∂2f

∂xj∂xi
= ∂

∂xj
( ∂f
∂xi

), fxixi = ∂2f
∂x2i

,

etc. Special notation in 2 and 3 dimensions.

Theorem: If f is defined in a ball around a, and fxixj , fxjxi are continuous at a,

then fxixj(a) = fxjxi(a). Example: f(x, y) =

{
xy x

2−y2
x2+y2

x2 + y2 > 0

0 x = y = 0
(fxy(0, 0) =

−1 6= 1 = fyx(0, 0)).

• Implicit differentiation. If F (x1, . . . , xn, y) = 0, then for all i, ∂F
∂xi

+ ∂F
∂y

∂y
∂xi

= 0, i.e.,
∂y
∂xi

= −Fxi
Fy

.

• Taylor’s formula. Multiindex k = (k1, . . . , kn). |k| = k1 + . . .+ kn, k! = k1! · . . . · kn!,

f (k) = ∂|k|f

∂x
k1
1 ...∂xknn

, (x− a)k = (x1 − a1)k1 · . . . · (xn − an)kn .

Theorem: If f is continuously differentiable to order m in a ball around a, then

f(x) =
∑

k:|k|<m
f (k)(a)
k!

(x − a)k +
∑

k:|k|=m
f (k)(a+θ(x−a))

k!
(x − a)k, where θ ∈ (0, 1)

is a parameter dependent on a and x. (Lagrange remainder.) Example: Taylor’s
formula in 2 and 3 dimensions.

Open set. Convex set.

Theorem (Lagrange’s mean value theorem): If f is differentiable in an open con-
vex set G, then for all x, y ∈ G there exists θ ∈ (0, 1) such that f(y) − f(x) =∑n

i=1
∂f
∂xi

(x+ θ(y − x))(y − x) = ∇f(x+ θ(y − x)) · (y − x).

Corollary: If all partial derivatives of f equal to 0 everywhere in G, then f is
constant in G.

9 Extrema of functions of several variables

• Local extrema. Local minimum and local maximum. Strict local minimum and
local maximum.

Theorem (necessary condition): If f has local extremum at a ∈ Rn and fxi exists
for some i, then fxi(a) = 0.

Critical point. Remark: If f has local extremum at a, then a is critical, but not
vice versa. Saddle point. Example: f(x, y) = y2 − x2.

• Positive and negative definite symmetric quadratic forms, Q(z) =
∑n

i,j=1 aijzizj.

Theorem (sufficient condition): If f is twice continuously differentiable in a ball
around a and fxi(a) = 0 for all i, then f attains a local maximum (resp., minumum)

at a if the (symmetric) quadratic form Q(z) =
∑n

i,j=1
∂2f

∂xi∂xj
(a)zizj is negative (resp.,

positive) definite. If Q takes positive and negative values, then f does not have local
extremum at a.
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Examples: (a) if n = 1, then Q(z) = ∂2f
∂x21
z21 , and we recover the known sufficient

condition for real functions, (b) if n = 2, then Q is positive definite iff ∂2f
∂x21

∂2f
∂x22
−

( ∂2f
∂x1∂x2

)2 > 0 and ∂2f
∂x21

> 0, and negative definite iff ∂2f
∂x21

∂2f
∂x22
− ( ∂2f

∂x1∂x2
)2 > 0 and

∂2f
∂x21

< 0.

Hessian matrix of f , ( ∂2f
∂x1∂x2

)ni,j=1.

• Sylvester’s criterion: A symmetric quadratic form Q(z) =
∑n

i,j=1 aijzizj is positive

definite iff a11 > 0,

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ > 0,

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ > 0, . . ., detA > 0.

Remark: Q is negative definite iff −Q is positive definite. Thus, Q is negative

definite iff a11 < 0,

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ > 0,

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ < 0, . . .

Examples: (a) f(x, y) = x4 + y4− 4xy+ 1, (b) f(x, y) = x2 + 2xy+ y2, (c) f(x, y) =
xy3. (In (b) and (c) fxxfyy − (fxy)

2 = 0.)

• Finding extrema of a function on a bounded closed set. Example: Find global
maximum and minimum of f(x, y) = x2−2xy+2y on {(x, y) : 0 ≤ x ≤ 3, 0 ≤ y ≤ 2}.

• Jacobi matrix of g1(x1, . . . , xn), . . . , gm(x1, . . . , xn), ( ∂gi
∂xj

)i,j. Jacobian, ∂(g1,...,gn)
∂(x1,...,xn)

.

• Method of Lagrange multipliers.

Theorem: Let f, g1, . . . , gm be continuously differentiable on an open set G and

the rank of the Jacobi matrix

 ∂g1
∂x1

. . . ∂g1
∂xn

. . .
∂gm
∂x1

. . . ∂gm
∂xn

 equals m for all x ∈ G. Let

F (x) = f(x)−λ1g1(x)− . . . λmgm(x). If f has local extremum subject to constraints
g1(x) = . . . = gm(x) = 0 at point a, then there exist λ1, . . . , λm ∈ R, such that
∂F
∂xi

(a) = 0 for all i.

Remark: condition on the Jacobi matrix means that none of the constraints gi(x) =
0 follows from the others. λ1, . . . , λm are Lagrange multipliers. F is Lagrangian.

Strategy: (a) check the rank condition, (b) write down the Lagrangian,
(c) find all solutions x1, . . . , xn, λ1, . . . , λm of the system of equations{

∂F
∂xi

(x) = 0 i ∈ {1, . . . , n}
gj(x) = 0 j ∈ {1, . . . ,m} , (d) evaluate f at all found (x1, . . . , xn).

Examples: (a) maximum of f(x, y, z) = x+ 2y+ 3z on the curve

{
x− y + z = 1
x2 + y2 = 1

,

(b) maximum of f(x, y) = xy given x + y − p = 0, (c) maximum and minimum of
f(x1, . . . , xn) =

∑n
i,j=1 aijxixj with aij = aji given x21 + . . .+ x2n = 1.

• Examples of change of variables:
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(a) A = ( ∂f
∂x1

)2 + . . .+ ( ∂f
∂xn

)2 and B = ∂2f
∂x21

+ . . .+ ∂2f
∂x2n

do not depend on the choice

of ONB,

(b) For z = f(x, y), expressions for A = (zx)
2 + (zy)

2 = ‖∇f‖2 and B = zxx + zyy
(Laplacian of f) in polar coordinates: A = (zr)

2 + 1
r2

(zϕ)2, B = zrr + 1
r2
zϕϕ + 1

r
zϕ,

(c) solve yzx − xzy = 0 using polar coordinates,

(d) linear transport equation, ut + cux = 0, substitute ξ = t, η = x− ct,
(e) wave equation, utt = a2uxx, substitute ξ = x− at, η = x+ at.

10 Uniform convergence

• Interchange of limits, integrals, and derivatives is not always allowed:

(a) fn(x) =


1 x > 1

n

nx x ∈ [0, 1
n
]

0 x ≤ 0
are continuous, but the limit is not,

(b) fn(x) =

{
1 x ∈ [0, 1], x = p

q
, q ≤ n

0 else
are integrable, but the limit is not,

(c) fn(x) =


nx x ∈ [0, 1

n
]

n( 2
n
− x) x ∈ [ 1

n
, 2
n
]

0 else
converge to 0, but their integrals do not con-

verge to 0,

(d) fn(x) = |x|1+ 1
n , x ∈ [−1, 1], differentiable at 0, but the limit is not,

(e) fn(x) = 1
n

sinnx, x ∈ [0, π] converge to 0, but their derivatives do not converge
to 0.

• Uniform convergence of fn(x) to f on E, fn(x)
E

⇒ f(x) as n → ∞. Example:
fn(x) = xn converge uniformly on [0, q] for q ∈ (0, 1), but not on [0, 1].

Properties: (a) if fn are continuous on E and fn
E

⇒ f as n → ∞, then f is
continuous,

(b) if fn are integrable on [a, b] and fn
[a,b]

⇒ f as n→∞, then f is integrable on [a, b]

and
∫ b
a
f(x)dx = limn→∞

∫ b
a
fn(x)dx,

(c) if fn are differentiable on [a, b], fn → ϕ and f ′n ⇒ ψ on [a, b] as n → ∞, then
ϕ′ = ψ.

Cauchy criterion of uniform convergence: fn ⇒ f on E as n→∞ iff for any ε > 0
there exists N such that for all n ≥ N and m > 0, supx∈E |fn+m(x)− fn(x)| < ε.

Theorem (Weierstrass, sufficient condition): If there exists a sequence an such that
limn→∞ an = 0 and supx∈E |fn(x)− f(x)| ≤ an, then fn ⇒ f on E as n→∞.

• Uniform convergence of series. Example:
∑∞

k=1
sin kx
k2

.
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Cauchy criterion:
∑∞

n=1 un(x) converges uniformly on E iff ∀ε > 0 ∃N such that
∀n ≥ N,m > 0, supx∈E |

∑n+m
k=n+1 uk(x)| < ε.

Weierstrass: if ∃an such that supx∈E |un(x)| ≤ an and
∑∞

n=1 an < ∞ then∑∞
n=1 un(x) converges uniformly.

If un are continuous and
∑∞

n=1 un(x) converges uniformly, then s(x) =
∑∞

n=1 un(x)
is also continuous.

If un are integrable on [a, b] and
∑∞

n=1 un(x) converges uniformly, then
∫ b
a
s(x)dx =∑∞

n=1

∫ b
a
un(x)dx.

If un are differentiable on [a, b],
∑∞

n=1 un(x) converges, and
∑∞

n=1 u
′
n(x) converges

uniformly, then s′(x) =
∑∞

n=1 u
′
n(x).

Dirichlet test: If un(x) = an(x)bn(x), where (a) an(x) ⇒ 0 on E and for
each x ∈ E, an(x) is a non-increasing sequence, (b) there exists C such that
supx∈E |

∑n
k=1 bk(x)| ≤ C for all n, then

∑∞
n=1 un(x) converges uniformly.

Examples: (a)
∑∞

n=1
xn

n!
converges uniformly on [−R,R], but not on R, (b)∑∞

n=1 e
−n5x2 sinnx converges uniformly on R, (c) Dirichlet series

∑∞
n=1

sinnx
nα

con-
verges uniformly on R for α > 1, converges uniformly on any [a, b] which does not
contain 2πk, converges on R but not uniformly.

Remark: Properties of uniform convergence of series are used in explicit calculations.
Examples:

∑∞
n=1 nq

n,
∑∞

n=1
qn

n
, Taylor series for ln(1+x) and arctanx. Approximate

calculations of integrals using Taylor series expansion,
∫ T
0

sinx
x
dx.

• Uniform convergence of functions of several variables, f(x, y) ⇒ ϕ(x) on X ⊆ Rn

as y → y0 ∈ Rm.

Cauchy: f(x, y) ⇒ ϕ(x) on X as y → y0 iff ∀ε > 0 ∃δ > 0 such that for all y1, y2
with 0 < ‖y1 − y0‖, ‖y2 − y0‖ < δ, supx∈X |f(x, y1)− f(x, y2)| < ε.

Weierstrass: If there exists g(y) such that limy→y0 g(y) = 0 and supx∈S |f(x, y) −
ϕ(x)| ≤ g(y), then f(x, y) ⇒ ϕ(x) on X as y → y0.

Conditions for interchange of limits, limit and integral, limit and derivative can
be formulated similarly as in previous situations, but it is often easier to use joint
continuity:

Jointly continuous function f(x, y), x ∈ X ⊂ Rn, y ∈ Y ⊂ Rm. Example: f(x, y) ={
1 xy 6= 0
0 xy = 0

is continuous in x and in y at 0, but not jointly continuous at 0.

Theorem: Let f(x, y) be defined on X × Y , where X is closed and bounded set in
Rn (e.g., X = [a1, b1]× . . .× [an, bn]) and Y is closed and bounded set in Rm (e.g.,
Y = [c1, d1] × . . . × [cm, dm]). If f is jointly continuous on X × Y , then for any

y0 ∈ Y , f(x, y)
X

⇒ f(x, y0) as y → y0.

Corollaries: (a) If f(x, y) is jointly continuous on X × Y , where X = [a, b] and Y is

closed and bounded in Rm, then I(y) =
∫ b
a
f(x, y)dx is continuous on Y , i.e., for all

y0 ∈ Y , limy→y0
∫ b
a
f(x, y)dx =

∫ b
a
f(x, y0)dx =

∫ b
a
(limy→y0 f(x, y))dx.
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(b) If fy(x, y) is jointly continuous on [a, b]× [c, d], then I ′(y) =
∫ b
a
fy(x, y)dx.

(c) If f(x, y) is jointly continuous on [a, b] × [c, d], then
∫ d
c
I(y)dy =∫ b

a
(
∫ d
c
f(x, y)dy)dx.

(d) Let J(y) =
∫ b(y)
a(y)

f(x, y)dx, where a ≤ a(y), b(y) ≤ b, there exist a′(y), b′(y)

for all c ≤ y ≤ d. If fy(x, y) is jointly continuous on [a, b] × [c, d], then J ′(y) =∫ b(y)
a(y)

fy(x, y)dx+ f(b(y), y)b′(y)− f(a(y), y)a′(y).

Examples: (a) I(y) =
∫ 1

0
ln(x2 + y2)dx is continuous for all y > 0 and I ′(y) =

2 arctan 1
y
. However, I ′(0) = π 6= 0 =

∫ 1

0
d
dy

ln(x2 + y2)|y=0dx.

(b) f(x, y) = xy on [0, 1]× [a, b], 0 < a < b.
∫ 1

0
xb−xa
lnx

dx = ln 1+b
1+a

.

(c) for f(x, y) =

{
y2−x2

(x2+y2)2
x, y ∈ [0, 1], x2 + y2 > 0

0 x = y = 0
(f is discontinuous at 0),∫ 1

0
(
∫ 1

0
f(x, y)dx)dy = π

4
6= −π

4
=
∫ 1

0
(
∫ 1

0
f(x, y)dy)dx.

(d) J(y) =
∫ y
0

(y−x)n−1

(n−1)! f(x)dx, J (n)(y) = f(y).

11 Metric, normed, and Hilbert spaces

• Metric space, (X, ρ). Examples: (a) X = R, ρ(x, y) = |x− y|, (b) X = C, ρ(x, y) =
|x−y|, (c) X = Rn, ρ(x, y) =

√
(x1 − y1)2 + . . .+ (xn − yn)2, (d) X = Rn, ρ(x, y) =∑n

i=1 |xi − yi|, (e) X = Rn, ρ(x, y) = max1≤i≤n |xi − yi|, (f) X = C[a,b], ρ(f, g) =

maxx∈[a,b] |f(x) − g(x)|, (g) X = Ck
[a,b], ρ(f, g) =

∑k
i=0 maxx∈[a,b] |f (i)(x) − g(i)(x)|,

(h) X = `2, ρ(x, y) =
√∑∞

i=1(xi − yi)2, (i) X = `1, ρ(x, y) =
∑∞

i=1 |xi − yi|, (j)
X = `∞, ρ(x, y) = supi≥1 |xi − yi|.
Open ball, B(a, r). Examples: open ball in R2 with metric from (c)-(e).

Closure of S in (X, ρ), S. Closed ball. Properties: (a) S ⊆ S, (b) S = S, (c) if
S1 ⊆ S2, then S1 ⊆ S2, (d) S1 ∪ S2 = S1 ∪ S2.

Closed set. Open set. Remarks: (a) S is closed in (X, ρ) iff X \ S is open, (b) X
and ∅ are both open and closed in (X, ρ), (c) intersections and unions of open sets
(closed sets).

Limit of sequence xn ∈ X. Examples: (a) R, (b) C[a,b]. Continuous function on
(X, ρ). Cauchy sequence.

Complete metric space. Examples: (a) R, (b) Rn (with any of (c-e) metrics), (c)
C[a,b], (d) `2.

Compact metric space. Remark: if X is compact, then it is closed and bounded.
Proposition: X ⊆ Rd is compact iff X is closed and bounded in Rd. Examples: (a)
B(a, r) and S(a, r) are compacts in Rd, (b) B(0, 1) is not a compact in `2 (although
it is closed and bounded).

Theorem: If f is a continuous function on a compact S, then it is bounded and
attains its maximal and minimal values at some points of S.
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• Normed (vector) space. Every normed space is a metric space, ρ(x, y) = ‖x −
y‖. Examples: (a) Rn, ‖x‖ =

√
x21 + . . .+ x2n, (b) Rn, ‖x‖ =

∑n
i=1 |xi|, (c) Rn,

‖x‖ = max1≤i≤n |xi|, (d) C[a,b], ‖f‖ = maxx∈[a,b] |f(x)|, (e) `p, ‖x‖ = (
∑∞

i=1 |xi|p)
1
p ,

p ∈ [1,∞].

Equivalence of norms. Theorem: If X is a finite dimensional normed space, then
any two norms on it are equivalent. Example: In Rn all the three norms (a-c) are
equivalent. Remark: If two norms are equivalent, then (a) xn converges to x in one
norm iff xn converges to x in the other norm, (b) if f is continuous with respect to
one norm, then it is continuous with respect to the other norm.

Banach space, complete normed space. Examples: (a) Rn, (b) C[a,b], (c) `2, (d) any
finite dimensional closed space.

• Hilbert space, complete vector space with an inner product. Hilbert space is a
normed space, ‖x‖ =

√
〈x, x〉.

Theorem: A normed vector space X over R admits inner product iff the parallelo-
gramm identity holds, i.e., for all x, y ∈ X, ‖x+y‖2 +‖x−y‖2 = 2(‖x‖2 +‖y‖2). In
this case, one defines the inner product as 〈x, y〉 = 1

4
(‖x+y‖2−‖x−y‖2). Example:

`p, p ∈ [1,∞] is Hilbert iff p = 2.

Separable Hilbert space. Example: {eiαx}α∈R is an uncountable basis of L = {y(x) =∑n
j=1 aje

iαjx, n ∈ N}. Completion of L is a non-separable Hilbert space.

Theorem (Gram-Schmidt): Any separable Hilbert space has an ONB.

Properties of ONB: If {ei}i≥1 is an ONB, then for any x ∈ X, x =
∑∞

i=1 xiei (i.e.,
‖x −

∑n
i=1 xiei‖ → 0 as n → ∞), where xi = 〈x, ei〉 (Fourier coefficients). Fourier

series of x. Parseval’s identity, ‖x‖2 =
∑∞

i=1 |xi|2.

12 Ordinary differential equations

• Ordinary differential equation (ODE), F (x, y, y′, . . . , y(n)) = 0 or y(n) =
f(x, y, y′, . . . , y(n−1)). Order of the ODE. Classical solution. Examples: y(n) = f(x).

General first order ODE, y′ = f(x, y). Geometric interpretation of solutions. Di-
rection field. Integral curve. Isoclines. Example: y′ = x2 + y2, isoclines are circles
centred at 0.

Examples to various behaviors of solutions: (a) normal reproduction, y′ = λy, (b)
logistic curve, y′ = y(1−y), (c) harvesting, y′ = y(1−y)−q, (d) explosion, y′ = λy2.

General solution to n-th order ODE, y = ϕ(x,C1, . . . , Cn), C1, . . . , Cn constants.
Particular solution. Initial value problem.

Inverse problem: given relation y = ϕ(x,C1, . . . , Cn), C1, . . . , Cn constants, find (n-
th order) ODE for y. Example: (a) ODE for all circles in the plane, (b) ODE for a
family of parabolas in the plane.
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• Separable first order ODEs. (1) y′ = f(x) with y(x0) = y0 admits solution y(x) =
y0 +

∫ x
x0
f(x)dx. In differentials: dy = f(x)dx. Integral curves (vertical shifts).

Example: y′ = 1
x
.

(2) y′ = f(y) or dy = f(y)dx. Solutions are given by x = x0 +
∫ y
y0

dy
f(y)

and y = y0
if f(y0) = 0. Integral curves (horizontal shifts). Remark: In this case, several
integral curves may pass through the same point (x0, y0). Examples: (a) y′ = y2,
(b) y′ = 3 3

√
y2 (here 2 integral curves pass through (2, 0)).

(3) y′ = f(x)g(y). If g(y) 6= 0, rewrite dy
g(y)

= f(x)dx and integrate. If g(y0) = 0 for
some y0, then y = y0 is also a solution to the ODE.

(4) M(x)N(y)dx+ P (x)Q(y)dy = 0. First solve the case P (x) 6= 0, N(y) 6= 0 using
integration. Then examine zeros of P and N . Examples: (a) x(y2 − 1)dx+ y(x2 −
1)dy = 0, (b) xydx+ (x+ 1)dy = 0, (c) x2y2dy = (y − 1)dx.

Remark: pay attention when divide by a function which takes value 0 at some point,
some solution may be lost.

(5) y′ = f(ax + by). Change variables (x, y) to (x, z), where z = ax + by. Then
dz = adx+ bdy = (a+ bf(z))dx, which is a separable equation.

• Homogeneous first order ODEs. (1) Each homogeneous first order ODE can be
reduced to a separable ODE by changing the variables (x, y) to (x, t), where y = tx
(and dy = xdt+ tdx). Examples: (a) y′ = 2xy

x2−y2 , (b) xdy = (x+ y)dx.

(2) A first order ODE can sometimes be reduced to a homogeneous ODE by changing
variables (x, y) to (x, z), where y = zm, and m is tuned appropriately. Example:

2x4yy′ + y4 = 4x6 is reduced to a homogeneous equation by substituting y = z
3
2 .

(3) y′ = f(a1x+b1y+c1
a2x+b2y+c2

) can be reduced to a homogeneous ODE by changing variables

(x, y) to (u, v), where x = u + ξ, y = v + η, and (ξ, η) is a solution to the system

of linear equations

{
a1ξ + b1η + c1 = 0
a2ξ + b2η + c2 = 0

(i.e., (ξ, η) is the point of intersection of

the lines a1x + b1y + c1 = 0 and a2x + b2y + c2 = 0). If the above system does
not have solutions (lines are parallel), then the ODE can be rewritten in the form
y′ = F (a2x+ b2y), for some F , and hence can be reduced to a separable ODE (see
(5) above). Example: (2x− 4y + 6)dx+ (x+ y − 3)dy = 0.

• Applications: solving physical problems using ODEs.

• Linear first order ODE, y′+Py = Q. Homogeneous equation, y′+Py = 0. General
solution to homogeneous equation, y = Ce−

∫
P (x)dx. General solution to inhomoge-

neous equation. Strategy: (a) find general solution to the homogeneous equation,
(b) replace constant C by a (unknown) function of x, C(x), and substitute in the
inhomogeneous equation to find C(x). Example: xy′ − 2y = 2x4.

Reductions to linear first order ODEs: (1) change the role of the variables, x = x(y).
Example: y = (2x+ y3)y′.

(2) Bernoulli equation, y′ + a(x)y = b(x)yn, n 6= 1. Substitute z = 1
yn−1 .
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(3) Riccati equation, y′ + a(x)y + b(x)y2 = c(x). General solution is not always
possible to find. If, however, y1 = y1(x) is a particular solution, then the substitution
y(x) = z(x) + y1(x) reduces Riccati to Bernoulli.

• Existence and uniqueness of solutions.

Banach fixed-point theorem: If (X, ρ) is a metric space and T : X → X a contrac-
tion, then there exists a unique x∗ ∈ X such that T (x∗) = x∗. Furthermore, for any
x0 ∈ X, if xn+1 = T (xn), then xn → x∗ in (X, ρ).

Picard-Lindelöf theorem: Let f = f(x, y) be (a) uniformly Lipschitz continuous in y
and (b) continuous in x, then there exists ε > 0 such that the initial value problem
y′ = f(x, y), y(x0) = y0 has a unique solution on [x0 − ε, x0 + ε]. Moreover, the
functions y0(x) = y0, yk(x) = y0 +

∫ x
x0
f(s, yk−1(s))ds, k ≥ 1, converge uniformly to

the unique solution. (Picard iteration.) Example: y′ = x− y2, y(0) = 0, y0(x) = 0,
y1(x) = x2

2
, y2(x) = x2

2
− x4

20
.

Example: y′ = 3y
2
3 , y(0) = 0, at least two solutions (a) y(x) = 0 for all x, (b)

y(x) = x3 for x < 0 and y(x) = 0 for x ≥ 0.

• Higher order ODEs. Reduction of the order: (a) F (x, y(k), . . . , y(n)) = 0, (b)
F (y, y′, . . . , y(n)) = 0. Example: 2yy′′ = (y′)2 + 1.

• Linear ODE of nth order, a0y
(n) + a1y

(n−1) + . . . + any = F (x), where ai(x) are
continuous functions. Let (a, b) be an interval such that a0(x) 6= 0 for all x ∈ (a, b).
On the interval (a, b) rewrite the equation as Lny = y(n)+p1y

(n−1)+. . .+pny = f(x),
where pi(x) are continuous functions on (a, b). Homogeneous linear ODE, Lny = 0.

Theorem: If y1, y2 are particular solutions to Lny = 0 and C is a constant, then
(y1 + y2) and Cy1 are also solutions to Lny = 0.

Linearly independent functions. Examples: (a) 1, x, x2, . . . , xn are linearly inde-
pendent, (b) 1, sin2 x, cos2 x are linearly dependent. Wronski determinant, W (x) =
W (y1, . . . , yn).

Theorem: If y1, . . . , yn are solutions to Lny = 0 on (a, b), then either W (x) 6= 0 for
all x ∈ (a, b) (y1, . . . , yn are linearly independent), or W (x) = 0 for all x ∈ (a, b)
(y1, . . . , yn are linearly dependent).

Fundamental system of solutions to Lny = 0. Theorem: If y1, . . . , yn is a fundamen-
tal system of solutions to Lny = 0, then y = C1y1 + . . . Cnyn is the general solution
to Lny = 0. Example: y′′ − y = 0.

Inverse problem: Given a linearly independent system of functions y1, . . . , yn, find
the nth order linear ODE Lny = 0 which they solve. Example: x, x2 is a fundamental
system for y′′ − 2

x
y′ + 2

x2
y = 0 on intervals (0,+∞) and (−∞, 0).

• Inhomogeneous linear ODEs, Lny = f . Theorem: If y1 is a particular solution to
Lny = f and y2 is the general solution to Lny = 0, then (y1 + y2) is the general
solution to Lny = f . Example: y′′ + y = 3x. Strategy to find general solution to
Lny = f : (a) general solution to Lny = 0, y = C1y1 + . . . Cnyn, (b) replace Ci by
Ci(x) and substitute into Lny = f , write system of linear equations for dCi

dx
with
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Wronski matrix of y1, . . . , yn,


y1 . . . yn
y′1 . . . y′n

. . .

y
(n−1)
1 . . . y

(n−1)
n




C ′1(x)
C ′2(x)
. . .

C ′n(x)

 =


0
. . .
0

f(x)

.

Example: xy′′ − y′ = x2.

• Linear ODE with constant coefficients, a0y
(n) + . . . + any = f(x), where ai ∈ R,

a0 6= 0. Characteristic equation, a0λ
n + . . . + an = 0. Fundamental system of

solutions of homogeneous equation: (a) simple real root, (b) simple complex root,
(c) real root of multiplicity k, (d) complex root of multiplicity k. Examples: (a)
y′′ − y = 0, (b) y′′ + a2y = 0, (c) y′′′ − y′′ − y′ + y = 0, (d) y′′′′ + 8y′′ + 16y = 0.

Particular solutions to inhomogeneous equation Ly = f : (a) f(x) = Pm(x)eγx, (b)
f(x) = eαx(Pm(x) cos βx+Qm(x) sin βx), (c) f(x) = f1(x) + . . .+ fk(x). Example:
y′′′ − 6y′′ + 9y′ = xe3x + e3x cos 2x.
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