
Prof. Ph.D. A. Sapozhnikov Mathematics 2 (12-PHY-BIPMA2)

RETAKE SOLUTIONS, 07 October 2016

1. (4 points) Let v1, v2, v3 be linearly independent vectors. Are the vectors

w1 = v1 + v2 − v3, w2 = v2 + v3 − v1, w3 = v3 + v1 − v2

linearly independent?

Answer: Yes.

Solution. The vectors w1, w2, w3 are linearly independent if and only if

det

 1 1 −1
−1 1 1

1 −1 1

 6= 0. Since this determinant equals to 4 6= 0, the vectors

are linearly independent.

2. (4 points) Let (e1, e2) be an orthonormal basis of a Euclidean vector space V . Let

T ∈ L(V, V ) such that its matrix in the basis (e1, e1 + e2) is

(
1 1
1 −1

)
. Find the

matrix of T ∗ in the basis (e1, e1 + e2).

Answer:

(
4 7
−2 −4

)
.

Solution. Let f1 = e1, f2 = e1 + e2. The catch here is that the basis (f1, f2) is not
orthonormal. Thus, we first find the matrix of T in the basis (e1, e2). Denote by

A
(e)
T the matrix of T in the basis (e1, e2) and by A

(f)
T its matrix in the basis (f1, f2).

Let the transition matrix from (e1, e2) to (f1, f2) be C =

(
1 1
0 1

)
. Then

A
(e)
T = C A

(f)
T C−1 =

(
1 1
0 1

) (
1 1
1 −1

) (
1 −1
0 1

)
=

(
2 −2
1 −2

)
.

Then the matrix of T ∗ in the basis (e1, e2) is A
(e)
T ∗ =

(
A

(e)
T

)t
=

(
2 1
−2 −2

)
. Finally,

the matrix of T ∗ in the basis (f1, f2) is

A
(f)
T ∗ = C−1A

(e)
T ∗ C =

(
1 −1
0 1

) (
2 1
−2 −2

) (
1 1
0 1

)
=

(
4 7
−2 −4

)
.

3. (4 points) The matrix of a linear operator T in some orthonormal basis is

(
2 1
0 1

)
.

Is T positive definite?

Answer: No.



Solution. Since the matrix of T in an orthonormal basis is not symmetric, T is not
self-adjoint. Thus, it is not positive definite.

Despite that, for any v 6= 0, 〈T (v), v〉 > 0 !

4. (4 points) For which values of λ ∈ R the following quadratic form on R3 is positive
definite?

Q(x) = 5x21 + x22 + x23 + 4x1x2 − 2x1x3 − 2λx2x3

Answer: (0, 4
5
).

Solution. The matrix of the corresponding symmetric bilinear form is

A =

 5 2 −1
2 1 −λ
−1 −λ 1

 .

By Sylvester’s criterion, Q is positive definite if and only if all the leading principal
minors of A are positive. We have

|5| = 5 > 0,

∣∣∣∣ 5 2
2 1

∣∣∣∣ = 1 > 0, |A| = λ(4− 5λ) > 0 iff λ ∈
(

0,
4

5

)
.

5. (4 points) Is the following function continuous on R2?

f(x, y) =

{
x2y

x4+y2
if x2 + y2 > 0,

0 if x = y = 0.

Answer: No.

Solution. The function f is continuous at every (x, y) 6= (0, 0) as the ratio of a
polynomial and a positive polynomial, but it is not continuous at (0, 0). Indeed, if
α(t) = t, β(t) = t2, then limt→0 f(α(t), β(t)) = 1

2
6= 0 = f(0, 0).

In fact, even the limit lim(x,y)→(0,0) f(x, y) does not exist, since for α(t) = t, β(t) = 0,
limt→0 f(α(t), β(t)) = 0 6= 1

2
.

6. (4 points) Let f(x, y) = esin(x+y) xy. Compute ∂2f
∂x∂y

(0, 0).

Answer: 1.

Solution. We first compute ∂f
∂y

= esin(x+y) cos(x+y)xy+esin(x+y) x. Thus, ∂f
∂y

(x, 0) =

esinx x. Then

∂2f

∂x∂y
(0, 0) =

d

dx

(
esinx x

)
(0) =

(
esinx cosx x+ esinx

) ∣∣∣
x=0

= 1.
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7. (4 points) Find the maximum and minimum of the function u(x, y) = 3 + 2xy on
the set x2 + y2 ≤ 1.

Answer: 4 and 2.

Solution. We first find local extrema of u in the set x2 + y2 < 1. We compute
ux = 2y and uy = 2x. Thus, ux = uy = 0 only at the point (0, 0). At this point,
u(0, 0) = 3.

It remains to find extrema of u on the boundary of the disc, x2 + y2 = 1. We use
the method of Lagrange multipliers. Let F (x, y, λ) = 3+2xy−λ(x2 +y2−1). Then
Fx = 2y − 2λx and Fy = 2x − 2λy. Thus, if Fx = Fy = 0, then y = λ2y, which
means that either y = 0 or λ2 = 1.

Consider first the case y = 0. From the constraint we find x = ±1, and u(±1, 0) = 3.

Next, consider the case y 6= 0, λ2 = 1. In this case either x = y = ± 1√
2

and

u(± 1√
2
,± 1√

2
) = 4, or x = −y = ± 1√

2
and u(± 1√

2
,∓ 1√

2
) = 2. Thus, the maximum

of u is 4 and the minimim 2.

8. (4 points) Does the sequence of functions fn(x) = n sin 1
nx

converge uniformly on
[1,+∞) as n→∞?

Answer: Yes.

Solution. We first compute the pointwise limit of fn(x). For each x ≥ 1,

fn(x) = n sin
1

nx
=

sin 1
nx

1
nx

· 1

x
→ 1

x
, as n→∞.

Thus, if fn converges uniformly on [1,+∞), then it must converge to 1
x
. To prove

the uniform convergence, we need to show that supx≥1
∣∣fn(x)− 1

x

∣∣ → 0 as n → ∞.
To find this supremum, we compute(

fn(x)− 1

x

)′
=

1

x2

(
1− cos

1

nx

)
.

Since for x ≥ 1, 1
nx
∈ (0, 2π), the above derivative is always positive. Thus, the

supremum is either attained at x = 1 or at infinity. It is easy to see that it is
attained at x = 1:

sup
x≥1

∣∣∣∣fn(x)− 1

x

∣∣∣∣ = |fn(1)− 1| = 1− n sin
1

n
> 0.

Since the right hand side tends to 0 as n → ∞, we conclude that fn(x) converge
uniformly to 1

x
on [1,+∞) as n→∞.

9. (4 points) Let F = {f ∈ C[0, 1] : f(x) = αx2 for some α ∈ [0, 1]}. Is F compact
in C[0, 1]?

Answer: Yes.
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Solution. F is compact if for any sequence of functions fn ∈ F , one can select a
subsequence fnk

such that fnk
converges in the metric of C[0, 1] to some function

f ∈ F .

Let fn ∈ F . Then there exist αn ∈ [0, 1] such that fn(x) = αnx
2. Since αn is a

bounded sequence of real numbers, there exists a subsequence αnk
and a real number

α ∈ [0, 1] such that αnk
→ α as k → ∞. Let f(x) = αx2. Note that f ∈ F . We

claim that fnk
converges to f in C[0, 1]. Indeed,

sup
x∈[0,1]

|fnk
(x)− f(x)| = sup

x∈[0,1]

∣∣αnk
x2 − αx2

∣∣ = |αnk
− α| → 0, as k →∞.

Since fn was an arbitrary sequence of functions from F , we conclude that F is
compact.

10. (4 points) Find the general solution to the differential equation (x+ 2y3)y′ = y.

Answer: x = Cy + y3 and y = 0.

Solution. We change the role of variables, namely assume that x = x(y). Then
x′ = 1

y′
and the equation becomes x′ − 1

y
x = 2y2. (Assuming that y 6= 0.) This

is a linear ODE. We first find the general solution to the homogeneous equation
x′ − 1

y
x = 0. By separating variables and integrating, we obtain that x = Cy. To

find a particular solution to the nonhomogeneous equation, we replace in the above
solution the constant C by an unknown function of y, C(y), and substitute into the
equation:

(Cy)′ − 1

y
(Cy) = 2y2

From this we find C(y) = y2 + C. Thus, the general solution to the ODE is
x = Cy + y3.

In the above calculation we assumed that y 6= 0. A substitution in the equation
shows that y = 0 is also a solution to the ODE.

11. (4 points) Find the general solution to the differential equation y′′ − 2y′ + y = 2ex.

Answer: y = (C1 + C2x+ x2)ex.

Solution. This is a linear ODE with constant coefficients. We first find the general
solution to the homogeneous equation y′′− 2y′+ y = 0. The characteristic equation
λ2 − 2λ + 1 = 0 has the root λ = 1 of multiplicity 2. Thus, the general solution is
y1(x) = (C1 + C2x)ex.

Next, we search for a particular solution to the nonhomogeneous equation in the
form y2(x) = ax2ex. A substitution in the equation gives a = 1. Thus, the general
solution to the nonhomogeneous ODE is y(x) = y1(x) + y2(x) = (C1 + C2x +
x2)ex.
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