EXERCISES 3.1 (submit by 29.04.2016)

1. Consider the following two collections of vectors in \mathbb{R}^3 :

 $e_1 = (1, 2, 1), \quad e_2 = (2, 3, 3), \quad e_3 = (3, 8, 2),$

and

$$e'_1 = (3, 5, 8), \quad e'_2 = (5, 14, 13), \quad , e'_3 = (1, 9, 2).$$

Prove that each collection is a basis of \mathbb{R}^3 . Find the transition matrix from the first to the second basis.

- 2. How the transition matrix from one basis to another will change if
 - (a) two vectors in the first basis are swapped,
 - (b) two vectors in the second basis are swapped,
 - (c) vectors in the both bases are written in the reverse order.
- 3. Let T be a linear map from V to W such that its matrix in the bases (e_1, e_2, e_3) of V and (f_1, f_2) of W is $\begin{pmatrix} 0 & 1 & 2 \\ 3 & 4 & 5 \end{pmatrix}$. Find the matrix of T in the bases $(e_1, e_1 + e_2, e_1 + e_2 + e_3)$ of V and $(f_1, f_1 + f_2)$ of W.
- 4. Let T be a linear operator on \mathbb{R}^3 such that for each $x = (x_1, x_2, x_3)$, $T(x) = (x_1, x_1 + 2x_2, x_2 + 3x_3)$. Find the matrix of T in the canonical basis of \mathbb{R}^3 .
- 5. Let V be a vector space over a field F and $T \in \mathcal{L}(V, V)$. Prove that Ker(T) and Im(T) are invariant vector subspaces of V for T.
- 6. Let V be a vector space over a field F. Prove that for any vector subspace U of V there exists a vector subspace U' of V such that $V = U \oplus U'$.
- 7. Let $T: V \to F$ be a non-zero linear functional (i.e., $T(v) \neq 0$ for some $v \in V$) and U = Ker(T). Prove that $V = U \oplus \text{Span}(\{w\})$ for any $w \notin U$.
- 8. Let T be a linear operator on a vector space V over a field F. Let e_1, \ldots, e_m be a basis of Ker(T) and e_{m+1}, \ldots, e_n a basis of Im(T). How does the matrix of T in the basis e_1, \ldots, e_n of V look like?
- 9. Let T be a linear operator on the vector space $M_n(\mathbb{R})$ of n-by-n matrices with real coefficients such that for each $X \in M_n(\mathbb{R})$, $T(X) = X^t$ (here X^t is the transpose of X, $(X^t)_{ij} = X_{ji}$). Find the spectrum of T and all eigenvectors.
- 10. Find the eigenvalues and corresponding eigenvectors of a linear operator T which (in some basis) is described by the matrix $\begin{pmatrix} 4 & -5 & 2 \\ 5 & -7 & 3 \\ 6 & -9 & 4 \end{pmatrix}$. Is T diagonalizable?
- 11. Let T be an invertible linear operator on a vector space V. Let U be an invariant vector subspace of V for T. Prove that U is also invariant for T^{-1} .