EXERCISES 10.1 (submit by 17.06.2016)

- 1. In each of the cases below, find the limit f(x) of $f_n(x)$ for $x \in [0,1]$. Does f_n converge to f uniformly on [0,1]?
 - (a) $f_n(x) = \frac{1}{1+nx}$
 - (b) $f_n(x) = \frac{x}{1+n^2x^2}$
 - (c) $f_n(x) = \frac{nx}{1+n^2x^2}$
 - (d) $f_n(x) = n^2 x e^{-n^2 x^2}$

(e)
$$f_n(x) = x e^{-n^2 x^2}$$

- 2. Which of the following series converge uniformly on \mathbb{R} ? Which of the sums are continuous functions of x on \mathbb{R} ?
 - (a) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^2}{(1+x^2)^n}$ (b) $\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$ (c) $\sum_{n=1}^{\infty} \frac{1}{x^2+n^2}$ (d) $\sum_{n=1}^{\infty} \frac{\sin nx}{x^2+n}$.
- 3. For which of the following series $\sum_{n=1}^{\infty} u_n(x)$ on $(0,\pi)$, the derivative of the sum equals to the sum of the derivatives $u'_n(x)$?
 - (a) $\sum_{n=1}^{\infty} \frac{\sin nx}{n}$ (b) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^3}$
 - (c) $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$.