Prof. Ph.D. A. Sapozhnikov Mathematics 2 (12-PHY-BIPMA?2)

EXAM, 19 July 2016, 10:00 — 12:00

5

1. (4 points) Is the matrix A = < 1 _3 ) similar to a diagonal matrix? If so, find

this diagonal matrix.

Answer: No.

Solution. A matrix is similar to a diagonal matrix if and only if for any of its
eigenvalues, the algebraic and geometric multiplicities coincide. We first compute
-5 1 9
1 a_3 = (A —4)* has
one root A = 4 of multiplicity 2. Thus, 4 is the only eigenvalue of A. Its algebraic
multiplicity is 2. The geometric multiplicity of 4 is the dimension of the vector space
of eigenvectors corresponding to the eigenvalue 4, i.e., all = (x1, z3) which solve
Ax = 4x. The system of equations ( 5 —1 ) ( 1 ) =4 ( 1 ) is satisfied by
1 3 T Lo
any = = (1, To) with 71 = x5. Thus, the eigenspace of 4 is {x € R? : z; = zo}. Its
dimension is 1. Thus, the geometric multiplicity of 4 is 1, which is different from 2.
Since the algebraic and geometric multiplicities of 4 are different, the matrix is not
diagonalizable. O

the spectrum of A. The characteristic polynomial

2. (4 points) The matrix of a linear operator 7' on C? in the basis {(1,0),(0,1)} is

AT:(l 1

0 1) For which a € C the operator T is normal?

Answer: |a| = 1.

Solution. An operator T is normal if and only if 7*T = TT*, and if and only if
Ars Ap = ArpAp«. Since the given basis is orthonormal, Ap. = ﬁtT = ( I a >

- 1
Thus,
(1 1 a\ [ 2  a+i
ATAT*_(a 1)(—¢ 1)_(a—i |a|2+1)
and al
(1 a\[{1 i\ _ [1+la? i+a
= (5T )= (50 5)
Hence, T is normal iff |a| = 1. O

3. (4 points) A matrix of a sesquilinear form S in a basis e;, e5 is Ag = ( _11 ; _T_ ; ) :

Find S(z,y), where x = (1,4) and y = (—2i, 1) in the basis e, €.

Answer: i.
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Solution. By the definition, x = ey + ieg, y = —2ie; + e5. Thus,

S(x,y) = S(er+iey, —2iey + ex) = 2iS(er, e1) + S(er, e2) — 25(ea, e1) + 1S (e2, €2)
= 24+(1—-0)+2+i(24+14) =

Other way to see this is S(z,y) = zAgy' = (1 z)(_zl ;;2><Qf>:z O

4. (4 points) Prove that the following function is continuous on R2.

2

2’ sin(zy) if 22 + 2 > 0
flay) =49 = o) | o

0 ife=y=0.

Solution. First of all note that the function sin(zy) is continuous on R? as a com-
position of continuous functions. Thus, it suffices to prove that the function

2292 .
ser={ 5 170

0 ifr=y=0

is continuous on R?. The function ;f—f; is continous on R?\ {(0,0)} as the ratio of
polynomials, with denominator never equal to 0. Thus, it sufﬁces to prove that ¢ is
continous at (0,0), i.e., lim (g 4)—0,0) x2+y = 0. Note that 0 < xfy 22, Indeed,
the first mequahty is obv1ous the second 1nequahty is also obvious if 1 y =0, and if

y # 0, then 2+; < xyy = z?. Since lim, 4)—(0,0) 22 = 0, the result follows. O
5. (4 points) Let f(z,vy, z) = sin(zyz). Compute and aigy

Answer: cos(zyz)yz, —sin(zyz)ryz® + cos(ryz)z.

. . . 9 .
Solution. Using the chain rule, a—ic = sin’(zyz) 2 (zyz) = cos(zyz) yz.
The function f is a composition of sin and a polynomial, hence it is twice continu-
ously differentiable on R2. Therefore,

O f O f 0 0 0
900y Ogor a—y(cos(xyz) yz) =yz y cos(zyz) + cos(zyz) a—y(yz)

= —ayz?sin(zyz) + 2 cos(zyz).

. . x o o . . 82
6. (4 points) Let z = e™, where x = cos(st) and y = sin(s +t). Find &.

Answer: et sin(s+) (cog(st) cos(s + t) — ssin(st)sin(s + t)).

Solution. By the chain rule,
% 0z Ox N % dy .
ot dzr ot | Oy ot
= eeos(D sinsH) (_sgin(st) sin(s + ) + cos(st) cos(s + 1)) .

Wy (—sin(st)s) + €™z cos(s + t)
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7. (4 points) Find maximum and minimum of the function f(z,y) = x* + 3? on the
ellipse 322 + y* = 16.

Answer: Mazimum f(0,4) = f(0,—4) = 16, minimum f(—-=,0) = —

64
\/3 ’ 3v3’
Solution. We use the method of Lagrange multipliers. Consider the Lagrangian
F(x,y) = 23 + y* — A(32? + y* — 16). Every point (z,y) of local extremum of f
under the given constraint must satisfy F,(z,y) = F,(z,y) = 0 for some A € R.

Thus, we have the system of equations

322 — 6 r = 0 r(x—2)\) = 0
20—2\y = 0 — y(l—=X) = 0
322 +y? = 16. 32 +y* = 16.

We need to consider several cases:

(a) If x =0, then y = +4 and XA = 1. In this case f(0,£4) = 16.

(b) If y =0, thena::i\/ig and)\:i} In this case f(+£75 ()) j:;:“l[
(c)Ifz#0and y #0,then A\=1,z =2, and y = £2. In thls case f(2,+2) =12.

By comparing the above values of f, we conclude that the maximum is 16, attained
at points (0,4) and (0, —4), and the minimum is —3\—f attained at (— \4f, 0). O
8. (4 points) Compute the limit

1
lim [ (1-— wQ)% dz.

n—o0 0
Justify your answer.
Answer: 1.
Solution. Since the sequence of functions (1 — )% is monotone non-decreasing and
bounded from above by 1 on [0, 1], the integrals f (1— ) dx form a non-decreasing

bounded sequence in R. Thus, the limit hm fo (1-— ) dz exists and is < 1.

ot . _ 1 it #1 .
Let f,(x) = (1—2*)». Note that nh_)nolo fulz) = f(z) = { 0 ifrel In particular,
the limit is not a continuous function and fn does not Converge uniformly on [0, 1].
Thus, we cannot directly write that hrn fo folz)de = fo x)dx.

However, f, converges uniformly to f on any interval [0,7], v € (0,1). Indeed,

sup |fu(z) — f(z)] = sup |(1 - 962)% —1=1-( —72)% — 0, asn — oo.
z€[0,7] z€[0,7]

Thus, lim fo fo(@)da = [ f(z)dz =~ for any v € (0,1).
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10.

11.

We conclude that for each v € (0, 1),
1 Y
1> lim (1—:)52)%d$2 lim (1—x2)%dx:7.

Since the inequality holds for all v € (0,1), we have lim fol(l —a)nde=1. O

n—oo

(4 points) Let p be a metric on X. Prove that d(z,y) = min{p(x,y),1} is also a
metric on X.

Solution. We need to show that d satisfies the axioms of metric:

(a) For all z,y € X, d(z,y) > 0 and d(z,y) = 0 iff x = y. Indeed, since p(x,y) > 0,
also d(z,y) > 0, and if d(z,y) = 0, then p(x,y) = 0, which implies z = y.

(b) d(z,y) = d(y,x) for all z,y € X. Immediate from p(z,y) = p(y, ).

(c) For all z,y,z € V, d(z,z) < d(z,y) +d(y,2). If d(z,y) = 1 or d(y,z) = 1,
then the inequality holds, since d(z,z) < 1. If d(z,y) < 1 and d(y, z) < 1, then
d(z,y) = p(z,y) and d(y,z) = p(y,2), and we have d(z,2) < p(z,2) < p(z,y) +
p(y, z) =d(z,y) + d(y, 2). -

4 points) Find the general solution to the differential equation zy’ — 1y = ze =.
(4p g q y =y

Answer: ez =In|z|+C, C €R, z € (—00,0) or z € (0, +00).

Solution. This is a homogeneous ODE defined for z # 0. Substitute y = tz (¢ =
t'x +t). In the new variables, the ODE is zt' = e~*. By separating variables and
integrating, we get ¢’ = In |z| + C. Plugging in t = ¥ gives the general solution. [J

(4 points) Find the general solution to the differential equation y” + y = 4 cos z.

Answer: y = Cycosx + Cysinz + 2z sinz.

Solution. This is a linear ODE. Its general solution is y = y; + y2, where y; is the
general solution to the homogeneous ODE 3" +y = 0, and s is a particular solution
to the inhomogeneous ODE.

We first find y;. Consider y” +y = 0. The characteristic equation is A> +1 = 0 with
solutions A = +i. Thus, y; = C; cosz + Cysin x.

It remains to find y,. The right hand side has the form P(z)cosz + Q(z)sinzx.
Since 7 is a solution to the characteristic equation of multiplicity 1, we search for a
particular solution in the form ys(x) = x(Acosz + Bsinz), where A, B are some
constants that we need to identify. We first compute

Yy = Acosz + Bsinx + x(—Asinx + Bcosx)

Yy = —2Asinz + 2B cosx + x(—Acosx — Bsinx).
Substitution of y, into the ODE gives the equation —2Asinx + 2B cosx = 4 cos z,
which is the identity for A =0 and B = 2. Thus, y»(z) = 2z sinz.

The general solution is y(x) = C} cosz + Cysinz + 2x sin z. O



