
Prof. Ph.D. A. Sapozhnikov Mathematics 2 (12-PHY-BIPMA2)

EXAM, 19 July 2016, 10:00 – 12:00

1. (4 points) Is the matrix A =

(
5 −1
1 3

)
similar to a diagonal matrix? If so, find

this diagonal matrix.

Answer: No.

Solution. A matrix is similar to a diagonal matrix if and only if for any of its
eigenvalues, the algebraic and geometric multiplicities coincide. We first compute

the spectrum of A. The characteristic polynomial

∣∣∣∣ λ− 5 1
−1 λ− 3

∣∣∣∣ = (λ − 4)2 has

one root λ = 4 of multiplicity 2. Thus, 4 is the only eigenvalue of A. Its algebraic
multiplicity is 2. The geometric multiplicity of 4 is the dimension of the vector space
of eigenvectors corresponding to the eigenvalue 4, i.e., all x = (x1, x2) which solve

Ax = 4x. The system of equations

(
5 −1
1 3

)(
x1
x2

)
= 4

(
x1
x2

)
is satisfied by

any x = (x1, x2) with x1 = x2. Thus, the eigenspace of 4 is {x ∈ R2 : x1 = x2}. Its
dimension is 1. Thus, the geometric multiplicity of 4 is 1, which is different from 2.
Since the algebraic and geometric multiplicities of 4 are different, the matrix is not
diagonalizable.

2. (4 points) The matrix of a linear operator T on C2 in the basis {(1, 0), (0, 1)} is

AT =

(
1 i
a 1

)
. For which a ∈ C the operator T is normal?

Answer: |a| = 1.

Solution. An operator T is normal if and only if T ∗T = TT ∗, and if and only if

AT ∗AT = ATAT ∗ . Since the given basis is orthonormal, AT ∗ = A
t

T =

(
1 a
−i 1

)
.

Thus,

ATAT ∗ =

(
1 i
a 1

)(
1 a
−i 1

)
=

(
2 a+ i

a− i |a|2 + 1

)
and

AT ∗AT =

(
1 a
−i 1

)(
1 i
a 1

)
=

(
1 + |a|2 i+ a
−i+ a 2

)
.

Hence, T is normal iff |a| = 1.

3. (4 points) A matrix of a sesquilinear form S in a basis e1, e2 is AS =

(
i 1− i
−1 2 + i

)
.

Find S(x, y), where x = (1, i) and y = (−2i, 1) in the basis e1, e2.

Answer: i.
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Solution. By the definition, x = e1 + ie2, y = −2ie1 + e2. Thus,

S(x, y) = S(e1 + ie2,−2ie1 + e2) = 2iS(e1, e1) + S(e1, e2)− 2S(e2, e1) + iS(e2, e2)

= −2 + (1− i) + 2 + i(2 + i) = i.

Other way to see this is S(x, y) = xASy
t =

(
1 i

)( i 1− i
−1 2 + i

)(
2i
1

)
= i.

4. (4 points) Prove that the following function is continuous on R2.

f(x, y) =

{
x2y2

x2+y2
+ sin(xy) if x2 + y2 > 0

0 if x = y = 0.

Solution. First of all note that the function sin(xy) is continuous on R2 as a com-
position of continuous functions. Thus, it suffices to prove that the function

g(x, y) =

{
x2y2

x2+y2
if x2 + y2 > 0

0 if x = y = 0

is continuous on R2. The function x2y2

x2+y2
is continous on R2 \ {(0, 0)} as the ratio of

polynomials, with denominator never equal to 0. Thus, it suffices to prove that g is
continous at (0, 0), i.e., lim(x,y)→(0,0)

x2y2

x2+y2
= 0. Note that 0 ≤ x2y2

x2+y2
≤ x2. Indeed,

the first inequality is obvious, the second inequality is also obvious if y = 0, and if
y 6= 0, then x2y2

x2+y2
≤ x2y2

y2
= x2. Since lim(x,y)→(0,0) x

2 = 0, the result follows.

5. (4 points) Let f(x, y, z) = sin(xyz). Compute ∂f
∂x

and ∂2f
∂x∂y

.

Answer: cos(xyz)yz, − sin(xyz)xyz2 + cos(xyz)z.

Solution. Using the chain rule, ∂f
∂x

= sin′(xyz) ∂
∂x

(xyz) = cos(xyz) yz.

The function f is a composition of sin and a polynomial, hence it is twice continu-
ously differentiable on R2. Therefore,

∂2f

∂x∂y
=

∂2f

∂y∂x
=

∂

∂y
(cos(xyz) yz) = yz

∂

∂y
cos(xyz) + cos(xyz)

∂

∂y
(yz)

= −xyz2 sin(xyz) + z cos(xyz).

6. (4 points) Let z = exy, where x = cos(st) and y = sin(s+ t). Find ∂z
∂t

.

Answer: ecos(st) sin(s+t) (cos(st) cos(s+ t)− s sin(st) sin(s+ t)).

Solution. By the chain rule,

∂z

∂t
=

∂z

∂x

∂x

∂t
+
∂z

∂y

∂y

∂t
= exyy (− sin(st)s) + exyx cos(s+ t)

= ecos(st) sin(s+t) (−s sin(st) sin(s+ t) + cos(st) cos(s+ t)) .
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7. (4 points) Find maximum and minimum of the function f(x, y) = x3 + y2 on the
ellipse 3x2 + y2 = 16.

Answer: Maximum f(0, 4) = f(0,−4) = 16, minimum f(− 4√
3
, 0) = − 64

3
√
3
.

Solution. We use the method of Lagrange multipliers. Consider the Lagrangian
F (x, y) = x3 + y2 − λ(3x2 + y2 − 16). Every point (x, y) of local extremum of f
under the given constraint must satisfy Fx(x, y) = Fy(x, y) = 0 for some λ ∈ R.
Thus, we have the system of equations

3x2 − 6λx = 0
2y − 2λy = 0
3x2 + y2 = 16.

⇐⇒


x(x− 2λ) = 0
y(1− λ) = 0
3x2 + y2 = 16.

We need to consider several cases:

(a) If x = 0, then y = ±4 and λ = 1. In this case f(0,±4) = 16.

(b) If y = 0, then x = ± 4√
3

and λ = ± 2√
3
. In this case f(± 4√

3
, 0) = ± 64

3
√
3
.

(c) If x 6= 0 and y 6= 0, then λ = 1, x = 2, and y = ±2. In this case f(2,±2) = 12.

By comparing the above values of f , we conclude that the maximum is 16, attained
at points (0, 4) and (0,−4), and the minimum is − 64

3
√
3

attained at (− 4√
3
, 0).

8. (4 points) Compute the limit

lim
n→∞

∫ 1

0

(1− x2)
1
n dx.

Justify your answer.

Answer: 1.

Solution. Since the sequence of functions (1−x2) 1
n is monotone non-decreasing and

bounded from above by 1 on [0, 1], the integrals
∫ 1

0
(1−x2) 1

n dx form a non-decreasing

bounded sequence in R. Thus, the limit lim
n→∞

∫ 1

0
(1− x2) 1

n dx exists and is ≤ 1.

Let fn(x) = (1−x2) 1
n . Note that lim

n→∞
fn(x) = f(x) =

{
1 if x 6= 1
0 if x = 1.

In particular,

the limit is not a continuous function and fn does not converge uniformly on [0, 1].

Thus, we cannot directly write that lim
n→∞

∫ 1

0
fn(x) dx =

∫ 1

0
f(x) dx.

However, fn converges uniformly to f on any interval [0, γ], γ ∈ (0, 1). Indeed,

sup
x∈[0,γ]

|fn(x)− f(x)| = sup
x∈[0,γ]

|(1− x2)
1
n − 1| = 1− (1− γ2)

1
n → 0, as n→∞.

Thus, lim
n→∞

∫ γ
0
fn(x) dx =

∫ γ
0
f(x) dx = γ for any γ ∈ (0, 1).
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We conclude that for each γ ∈ (0, 1),

1 ≥ lim
n→∞

∫ 1

0

(1− x2)
1
n dx ≥ lim

n→∞

∫ γ

0

(1− x2)
1
n dx = γ.

Since the inequality holds for all γ ∈ (0, 1), we have lim
n→∞

∫ 1

0
(1− x2) 1

n dx = 1.

9. (4 points) Let ρ be a metric on X. Prove that d(x, y) = min{ρ(x, y), 1} is also a
metric on X.

Solution. We need to show that d satisfies the axioms of metric:

(a) For all x, y ∈ X, d(x, y) ≥ 0 and d(x, y) = 0 iff x = y. Indeed, since ρ(x, y) ≥ 0,
also d(x, y) ≥ 0, and if d(x, y) = 0, then ρ(x, y) = 0, which implies x = y.

(b) d(x, y) = d(y, x) for all x, y ∈ X. Immediate from ρ(x, y) = ρ(y, x).

(c) For all x, y, z ∈ V , d(x, z) ≤ d(x, y) + d(y, z). If d(x, y) = 1 or d(y, z) = 1,
then the inequality holds, since d(x, z) ≤ 1. If d(x, y) < 1 and d(y, z) < 1, then
d(x, y) = ρ(x, y) and d(y, z) = ρ(y, z), and we have d(x, z) ≤ ρ(x, z) ≤ ρ(x, y) +
ρ(y, z) = d(x, y) + d(y, z).

10. (4 points) Find the general solution to the differential equation xy′ − y = xe−
y
x .

Answer: e
y
x = ln |x|+ C, C ∈ R, x ∈ (−∞, 0) or x ∈ (0,+∞).

Solution. This is a homogeneous ODE defined for x 6= 0. Substitute y = tx (y′ =
t′x + t). In the new variables, the ODE is xt′ = e−t. By separating variables and
integrating, we get et = ln |x|+C. Plugging in t = y

x
gives the general solution.

11. (4 points) Find the general solution to the differential equation y′′ + y = 4 cos x.

Answer: y = C1 cosx+ C2 sinx+ 2x sinx.

Solution. This is a linear ODE. Its general solution is y = y1 + y2, where y1 is the
general solution to the homogeneous ODE y′′+y = 0, and y2 is a particular solution
to the inhomogeneous ODE.

We first find y1. Consider y′′+y = 0. The characteristic equation is λ2 + 1 = 0 with
solutions λ = ±i. Thus, y1 = C1 cosx+ C2 sinx.

It remains to find y2. The right hand side has the form P (x) cosx + Q(x) sinx.
Since i is a solution to the characteristic equation of multiplicity 1, we search for a
particular solution in the form y2(x) = x(A cosx + B sinx), where A,B are some
constants that we need to identify. We first compute

y′2 = A cosx+B sinx+ x(−A sinx+B cosx)

y′′2 = −2A sinx+ 2B cosx+ x(−A cosx−B sinx).

Substitution of y2 into the ODE gives the equation −2A sinx + 2B cosx = 4 cosx,
which is the identity for A = 0 and B = 2. Thus, y2(x) = 2x sinx.

The general solution is y(x) = C1 cosx+ C2 sinx+ 2x sinx.


