EXAM, 19 July 2016, 10:00 - 12:00

1. (4 points) Is the matrix $A = \begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix}$ similar to a diagonal matrix? If so, find this diagonal matrix. Answer: No.

Solution. A matrix is similar to a diagonal matrix if and only if for any of its eigenvalues, the algebraic and geometric multiplicities coincide. We first compute the spectrum of A. The characteristic polynomial $\begin{vmatrix} \lambda - 5 & 1 \\ -1 & \lambda - 3 \end{vmatrix} = (\lambda - 4)^2$ has one root $\lambda = 4$ of multiplicity 2. Thus, 4 is the only eigenvalue of A. Its algebraic multiplicity is 2. The geometric multiplicity of 4 is the dimension of the vector space of eigenvectors corresponding to the eigenvalue 4, i.e., all $x = (x_1, x_2)$ which solve Ax = 4x. The system of equations $\begin{pmatrix} 5 & -1 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = 4 \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ is satisfied by any $x = (x_1, x_2)$ with $x_1 = x_2$. Thus, the eigenspace of 4 is $\{x \in \mathbb{R}^2 : x_1 = x_2\}$. Its dimension is 1. Thus, the geometric multiplicity of 4 is 1, which is different from 2. Since the algebraic and geometric multiplicities of 4 are different, the matrix is not diagonalizable.

2. (4 points) The matrix of a linear operator T on \mathbb{C}^2 in the basis $\{(1,0), (0,1)\}$ is $A_T = \begin{pmatrix} 1 & i \\ a & 1 \end{pmatrix}$. For which $a \in \mathbb{C}$ the operator T is normal? Answer: |a| = 1.

Solution. An operator T is normal if and only if $T^*T = TT^*$, and if and only if $A_{T^*}A_T = A_TA_{T^*}$. Since the given basis is orthonormal, $A_{T^*} = \overline{A}_T^t = \begin{pmatrix} 1 & \overline{a} \\ -i & 1 \end{pmatrix}$. Thus,

$$A_T A_{T^*} = \begin{pmatrix} 1 & i \\ a & 1 \end{pmatrix} \begin{pmatrix} 1 & \overline{a} \\ -i & 1 \end{pmatrix} = \begin{pmatrix} 2 & \overline{a} + i \\ a - i & |a|^2 + 1 \end{pmatrix}$$

and

$$A_{T^*}A_T = \begin{pmatrix} 1 & \overline{a} \\ -i & 1 \end{pmatrix} \begin{pmatrix} 1 & i \\ a & 1 \end{pmatrix} = \begin{pmatrix} 1+|a|^2 & i+\overline{a} \\ -i+a & 2 \end{pmatrix}.$$

Hence, T is normal iff |a| = 1.

3. (4 points) A matrix of a sesquilinear form S in a basis e_1, e_2 is $A_S = \begin{pmatrix} i & 1-i \\ -1 & 2+i \end{pmatrix}$. Find S(x, y), where x = (1, i) and y = (-2i, 1) in the basis e_1, e_2 . Answer: i. Solution. By the definition, $x = e_1 + ie_2$, $y = -2ie_1 + e_2$. Thus,

 $S(x,y) = S(e_1 + ie_2, -2ie_1 + e_2) = 2iS(e_1, e_1) + S(e_1, e_2) - 2S(e_2, e_1) + iS(e_2, e_2)$ = -2 + (1 - i) + 2 + i(2 + i) = i.

Other way to see this is $S(x,y) = xA_S\overline{y}^t = \begin{pmatrix} 1 & i \end{pmatrix} \begin{pmatrix} i & 1-i \\ -1 & 2+i \end{pmatrix} \begin{pmatrix} 2i \\ 1 \end{pmatrix} = i.$

4. (4 points) Prove that the following function is continuous on \mathbb{R}^2 .

$$f(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} + \sin(xy) & \text{if } x^2+y^2 > 0\\ 0 & \text{if } x = y = 0. \end{cases}$$

Solution. First of all note that the function $\sin(xy)$ is continuous on \mathbb{R}^2 as a composition of continuous functions. Thus, it suffices to prove that the function

$$g(x,y) = \begin{cases} \frac{x^2y^2}{x^2+y^2} & \text{if } x^2+y^2 > 0\\ 0 & \text{if } x = y = 0 \end{cases}$$

is continuous on \mathbb{R}^2 . The function $\frac{x^2y^2}{x^2+y^2}$ is continous on $\mathbb{R}^2 \setminus \{(0,0)\}$ as the ratio of polynomials, with denominator never equal to 0. Thus, it suffices to prove that g is continous at (0,0), i.e., $\lim_{(x,y)\to(0,0)} \frac{x^2y^2}{x^2+y^2} = 0$. Note that $0 \leq \frac{x^2y^2}{x^2+y^2} \leq x^2$. Indeed, the first inequality is obvious, the second inequality is also obvious if y = 0, and if $y \neq 0$, then $\frac{x^2y^2}{x^2+y^2} \leq \frac{x^2y^2}{y^2} = x^2$. Since $\lim_{(x,y)\to(0,0)} x^2 = 0$, the result follows. \Box

5. (4 points) Let $f(x, y, z) = \sin(xyz)$. Compute $\frac{\partial f}{\partial x}$ and $\frac{\partial^2 f}{\partial x \partial y}$. Answer: $\cos(xyz)yz$, $-\sin(xyz)xyz^2 + \cos(xyz)z$.

Solution. Using the chain rule, $\frac{\partial f}{\partial x} = \sin'(xyz) \frac{\partial}{\partial x}(xyz) = \cos(xyz) yz$. The function f is a composition of sin and a polynomial hence it is tw

The function f is a composition of sin and a polynomial, hence it is twice continuously differentiable on \mathbb{R}^2 . Therefore,

$$\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} (\cos(xyz) yz) = yz \frac{\partial}{\partial y} \cos(xyz) + \cos(xyz) \frac{\partial}{\partial y} (yz)$$
$$= -xyz^2 \sin(xyz) + z \cos(xyz).$$

6. (4 points) Let $z = e^{xy}$, where $x = \cos(st)$ and $y = \sin(s+t)$. Find $\frac{\partial z}{\partial t}$. Answer: $e^{\cos(st)\sin(s+t)}$ ($\cos(st)\cos(s+t) - s\sin(st)\sin(s+t)$).

Solution. By the chain rule,

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial x}\frac{\partial x}{\partial t} + \frac{\partial z}{\partial y}\frac{\partial y}{\partial t} = e^{xy}y\left(-\sin(st)s\right) + e^{xy}x\cos(s+t)$$
$$= e^{\cos(st)\sin(s+t)}\left(-s\sin(st)\sin(s+t) + \cos(st)\cos(s+t)\right).$$

7. (4 points) Find maximum and minimum of the function $f(x, y) = x^3 + y^2$ on the ellipse $3x^2 + y^2 = 16$.

Answer: Maximum f(0,4) = f(0,-4) = 16, minimum $f(-\frac{4}{\sqrt{3}},0) = -\frac{64}{3\sqrt{3}}$.

Solution. We use the method of Lagrange multipliers. Consider the Lagrangian $F(x,y) = x^3 + y^2 - \lambda(3x^2 + y^2 - 16)$. Every point (x,y) of local extremum of f under the given constraint must satisfy $F_x(x,y) = F_y(x,y) = 0$ for some $\lambda \in \mathbb{R}$. Thus, we have the system of equations

$$\begin{cases} 3x^2 - 6\lambda x = 0\\ 2y - 2\lambda y = 0\\ 3x^2 + y^2 = 16. \end{cases} \iff \begin{cases} x(x - 2\lambda) = 0\\ y(1 - \lambda) = 0\\ 3x^2 + y^2 = 16. \end{cases}$$

We need to consider several cases:

- (a) If x = 0, then $y = \pm 4$ and $\lambda = 1$. In this case $f(0, \pm 4) = 16$.
- (b) If y = 0, then $x = \pm \frac{4}{\sqrt{3}}$ and $\lambda = \pm \frac{2}{\sqrt{3}}$. In this case $f(\pm \frac{4}{\sqrt{3}}, 0) = \pm \frac{64}{3\sqrt{3}}$.
- (c) If $x \neq 0$ and $y \neq 0$, then $\lambda = 1$, x = 2, and $y = \pm 2$. In this case $f(2, \pm 2) = 12$.

By comparing the above values of f, we conclude that the maximum is 16, attained at points (0, 4) and (0, -4), and the minimum is $-\frac{64}{3\sqrt{3}}$ attained at $(-\frac{4}{\sqrt{3}}, 0)$.

8. (4 points) Compute the limit

$$\lim_{n \to \infty} \int_0^1 (1 - x^2)^{\frac{1}{n}} \, dx.$$

Justify your answer.

Answer: 1.

Solution. Since the sequence of functions $(1-x^2)^{\frac{1}{n}}$ is monotone non-decreasing and bounded from above by 1 on [0, 1], the integrals $\int_0^1 (1-x^2)^{\frac{1}{n}} dx$ form a non-decreasing bounded sequence in \mathbb{R} . Thus, the limit $\lim_{n\to\infty} \int_0^1 (1-x^2)^{\frac{1}{n}} dx$ exists and is ≤ 1 .

Let $f_n(x) = (1-x^2)^{\frac{1}{n}}$. Note that $\lim_{n \to \infty} f_n(x) = f(x) = \begin{cases} 1 & \text{if } x \neq 1 \\ 0 & \text{if } x = 1. \end{cases}$ In particular, the limit is not a continuous function and f_n does not converge uniformly on [0, 1]. Thus, we cannot directly write that $\lim_{n \to \infty} \int_0^1 f_n(x) \, dx = \int_0^1 f(x) \, dx$.

However, f_n converges uniformly to f on any interval $[0, \gamma], \gamma \in (0, 1)$. Indeed,

$$\sup_{x \in [0,\gamma]} |f_n(x) - f(x)| = \sup_{x \in [0,\gamma]} |(1 - x^2)^{\frac{1}{n}} - 1| = 1 - (1 - \gamma^2)^{\frac{1}{n}} \to 0, \text{ as } n \to \infty.$$

Thus, $\lim_{n \to \infty} \int_0^{\gamma} f_n(x) \, dx = \int_0^{\gamma} f(x) \, dx = \gamma$ for any $\gamma \in (0, 1)$.

We conclude that for each $\gamma \in (0, 1)$,

$$1 \ge \lim_{n \to \infty} \int_0^1 (1 - x^2)^{\frac{1}{n}} \, dx \ge \lim_{n \to \infty} \int_0^\gamma (1 - x^2)^{\frac{1}{n}} \, dx = \gamma.$$

Since the inequality holds for all $\gamma \in (0, 1)$, we have $\lim_{n \to \infty} \int_0^1 (1 - x^2)^{\frac{1}{n}} dx = 1$. \Box

9. (4 points) Let ρ be a metric on X. Prove that $d(x, y) = \min\{\rho(x, y), 1\}$ is also a metric on X.

Solution. We need to show that d satisfies the axioms of metric:

(a) For all $x, y \in X$, $d(x, y) \ge 0$ and d(x, y) = 0 iff x = y. Indeed, since $\rho(x, y) \ge 0$, also $d(x, y) \ge 0$, and if d(x, y) = 0, then $\rho(x, y) = 0$, which implies x = y.

(b) d(x,y) = d(y,x) for all $x, y \in X$. Immediate from $\rho(x,y) = \rho(y,x)$.

(c) For all $x, y, z \in V$, $d(x, z) \leq d(x, y) + d(y, z)$. If d(x, y) = 1 or d(y, z) = 1, then the inequality holds, since $d(x, z) \leq 1$. If d(x, y) < 1 and d(y, z) < 1, then $d(x, y) = \rho(x, y)$ and $d(y, z) = \rho(y, z)$, and we have $d(x, z) \leq \rho(x, z) \leq \rho(x, y) + \rho(y, z) = d(x, y) + d(y, z)$.

10. (4 points) Find the general solution to the differential equation $xy' - y = xe^{-\frac{y}{x}}$. Answer: $e^{\frac{y}{x}} = \ln |x| + C$, $C \in \mathbb{R}$, $x \in (-\infty, 0)$ or $x \in (0, +\infty)$.

Solution. This is a homogeneous ODE defined for $x \neq 0$. Substitute y = tx (y' = t'x + t). In the new variables, the ODE is $xt' = e^{-t}$. By separating variables and integrating, we get $e^t = \ln |x| + C$. Plugging in $t = \frac{y}{x}$ gives the general solution. \Box

11. (4 points) Find the general solution to the differential equation $y'' + y = 4 \cos x$. Answer: $y = C_1 \cos x + C_2 \sin x + 2x \sin x$.

Solution. This is a linear ODE. Its general solution is $y = y_1 + y_2$, where y_1 is the general solution to the homogeneous ODE y'' + y = 0, and y_2 is a particular solution to the inhomogeneous ODE.

We first find y_1 . Consider y'' + y = 0. The characteristic equation is $\lambda^2 + 1 = 0$ with solutions $\lambda = \pm i$. Thus, $y_1 = C_1 \cos x + C_2 \sin x$.

It remains to find y_2 . The right hand side has the form $P(x) \cos x + Q(x) \sin x$. Since *i* is a solution to the characteristic equation of multiplicity 1, we search for a particular solution in the form $y_2(x) = x(A \cos x + B \sin x)$, where *A*, *B* are some constants that we need to identify. We first compute

$$y'_{2} = A\cos x + B\sin x + x(-A\sin x + B\cos x) y''_{2} = -2A\sin x + 2B\cos x + x(-A\cos x - B\sin x).$$

Substitution of y_2 into the ODE gives the equation $-2A \sin x + 2B \cos x = 4 \cos x$, which is the identity for A = 0 and B = 2. Thus, $y_2(x) = 2x \sin x$.

The general solution is $y(x) = C_1 \cos x + C_2 \sin x + 2x \sin x$.