Exercises 9.2, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov

1. Identify all $\alpha > 0$ for which the following series converge:

(a)
$$\sum_{n=2}^{\infty} \frac{1}{n \ln^{\alpha} n}$$
, (b) $\sum_{n=2}^{\infty} \frac{1}{n^2 \ln^{\alpha} n}$, (c) $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n} \ln^{\alpha} n}$.

2. Which of the following series converge?

(a)
$$\sum_{n=1}^{\infty} \frac{1}{2\sqrt{n}}$$
, (b) $\sum_{n=2}^{\infty} \frac{1}{(\ln n)^{\ln n}}$, (c) $\sum_{n=1}^{\infty} \frac{2^n}{n!}$, (d) $\sum_{n=1}^{\infty} \left(1 - \frac{1}{n}\right)^{n^2}$,
(e) $\sum_{n=1}^{\infty} \left(\sqrt[n]{a} - 1\right)$ for $a > 0$, (f) $\sum_{n=1}^{\infty} \ln\left(\cos\frac{1}{n}\right)$.

3. Which of the following series converge? Which converge absolutely?

(a)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$
, (b) $\sum_{n=1}^{\infty} \frac{\sin n}{n^2}$, (c) $\sum_{n=2}^{\infty} \frac{\cos n}{\ln n}$.