Exercises 8.2, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov

- 1. Find the area bounded by the curve $y = 1 x^2$, $x \in [-1, 1]$, and the x-axis.
- 2. Find the area bounded by the curve y = x(2-x) and the line $y = \frac{1}{2}x$.
- 3. The cycloid is a curve defined by $x(t) = a(t \sin t)$ and $y(t) = a(1 \cos t), t \in [0, 2\pi]$. Find the area bounded by the cycloid and the *x*-axis. Find the length of the cycloid. [Hint: To compute the area, use the formula $\int_0^{2\pi} y dx$, where dx = x'(t) dt.]
- 4. Find the volume of the solid of the revolution of the curve $y = \sin x, x \in [0, \pi]$ around x-axis.
- 5. Find the length of the curve $y = \ln(\cos x), x \in [0, \frac{\pi}{3}]$.
- 6. Find the length of the parabola $y = x^2, x \in [0, 1]$.