Exercises 3.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov

- 1. Use the $\varepsilon \delta$ definition to prove the following limits:
 - (a) $\lim_{x\to 1} 3x + 1 = 4$,
 - (b) $\lim_{x\to 2} x^3 = 8$,
 - (c) $\lim_{x\to 9} \sqrt{x} = 3$,
 - (d) $\lim_{x\to 5} \frac{3+x}{1+3x} = \frac{1}{2}$,
 - (e) $\lim_{x\to -1+} \sqrt{x+1} = 0$.
- 2. Using properties of the limits, compute the following:
 - (a) $\lim_{x\to 1} \frac{x^2-x-2}{x^2-1}$,
 - (b) $\lim_{x\to\infty} \frac{x^2-x-2}{x^2-1}$,
 - (c) $\lim_{x\to 2} \frac{\sqrt{x}-\sqrt{2}}{x-2}$.
- 3. Find $a \in \mathbb{R}$ such that the function

$$f(x) = \begin{cases} 3x + 2 & \text{for } x < 2\\ x^2 + a & \text{for } x \ge 2 \end{cases}$$

is continuous. (Hint: Compute left and right limits.)

- 4. Prove that there exists $x \in [1,2]$ such that $2^x = \pi$. (Hint: Use the continuity of $f(x) = 2^x$.)
- 5. Prove that $\lim_{x\to\infty} \frac{x^2}{e^x} = 0$. (Hint: Use the fact that $2^n \ge n^3$ for all $n \ge 10$ to prove that $e^x \ge (x-1)^3$ for all $x \ge 10$.)