RETAKE SOLUTIONS, 04 April 2016, 13:00 – 15:00

1. (4 points) For which $n \in \mathbb{N}$ the following inequality holds?

$$2^n > 2n+1$$

Answer: $n \geq 3$.

Solution. Direct calculation gives that the inequality is not true for n = 1 and n = 2, but true for n = 3. $(2^3 = 8 > 7 = 2 \cdot 3 + 1)$ We prove by induction on n that the inequality is true for all $n \ge 3$. The base of induction is verified, it remains to check the induction step. Assume that the inequality is true for n = k, where k is some integer ≥ 3 , and show that the inequality is also true for n = k + 1. By the induction hypothesis,

$$2^{k+1} = 22^k \ge 2(2k+1) = 4k + 2 = 2(k+1) + 1 + (2k-1) \ge 2(k+1) + 1$$

Thus, the inequality is true for n = k + 1. We conclude that the inequality holds if and only if $n \ge 3$.

2. (4 points) Compute the limit

$$\lim_{x \to 0} \left(\cos x \right)^{\frac{1}{x^2}}.$$

Answer: $e^{-\frac{1}{2}}$.

Solution. Note that

$$\lim_{x \to 0} (\cos x)^{\frac{1}{x^2}} = e^{\lim_{x \to 0} \frac{\ln \cos x}{x^2}}$$

Using the facts that $\lim_{y\to 0} \frac{\cos y - 1}{y^2} = -\frac{1}{2}$ and $\lim_{y\to 0} \frac{\ln(1+y)}{y} = 1$, we obtain that

$$\lim_{x \to 0} \frac{\ln \cos x}{x^2} = \lim_{x \to 0} \frac{\ln(1 + (\cos x - 1))}{\cos x - 1} \cdot \frac{\cos x - 1}{x^2}$$
$$= \lim_{x \to 0} \frac{\ln(1 + (\cos x - 1))}{\cos x - 1} \cdot \lim_{x \to 0} \frac{\cos x - 1}{x^2} = \lim_{y \to 0} \frac{\ln(1 + y)}{y} \cdot \lim_{x \to 0} \frac{\cos x - 1}{x^2}$$
$$= 1 \cdot \left(-\frac{1}{2}\right) = -\frac{1}{2}.$$

Another way to show that $\lim_{x\to 0} \frac{\ln \cos x}{x^2} = -\frac{1}{2}$ is by using l'Hospital's rule.

3. (4 points) Is the following function continuous? Is it differentiable?

$$f(x) = \begin{cases} \sin x \cdot \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Answer: continuous on \mathbb{R} , differentiable on $\mathbb{R} \setminus \{0\}$.

Solution. First of all, both sin x and sin $\frac{1}{x}$ are differentiable for all $x \neq 0$. Thus, f is differentiable for all $x \neq 0$. Since differentiability implies continuity, f is continuous at every $x \neq 0$. It remains to examine the point x = 0.

Since $|\sin x \sin \frac{1}{x}| \le |\sin x|$ and $\lim_{x \to 0} |\sin x| = 0$, we conclude that $\lim_{x \to 0} f(x) = 0 = f(0)$. Thus, f is continuous at 0.

Next, f is differentiable at 0 if the limit $\lim_{x\to 0} \frac{f(x)-f(0)}{x-0}$ exists. We compute

$$\lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{\sin x \sin \frac{1}{x}}{x} = \lim_{x \to 0} \frac{\sin x}{x} \cdot \sin \frac{1}{x}.$$

Since $\lim_{x\to 0} \frac{\sin x}{x} = 1$ and $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist (for instance, if $x_n = \frac{1}{2\pi n}$ and $y_n = \frac{1}{\frac{\pi}{2} + 2\pi n}$, then $\lim_{n\to\infty} \sin \frac{1}{x_n} = 0$ and $\lim_{n\to\infty} \sin \frac{1}{y_n} = 1$), we conclude that the limit $\lim_{x\to 0} \frac{\sin x}{x} \cdot \sin \frac{1}{x}$ does not exist. Thus, f is not differentiable at 0.

4. (4 points) Prove that the sequence $x_n = ne^{-n}$, $n \in \mathbb{N}$, is monotone decreasing.

Solution. Consider the function $f(x) = xe^{-x}$. This function is monotone decreasing for $x \ge 1$. Indeed,

$$f'(x) = e^{-x} - xe^{-x} = (1-x)e^{-x}.$$

Thus, $f'(x) \leq 0$ if and only if $x \geq 1$. Since $x_n = f(n)$, the sequence x_n is monotone decreasing.

5. (4 points) Find the global minimum of the function $f(x) = \frac{1}{2}|x| + \sin x, x \in \mathbb{R}$. Answer: $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$.

Solution. First note that f is differentiable everywhere except x = 0, and f(0) = 0. Next, $f(x) \ge \frac{1}{2}|x| - 1 > 0$ if |x| > 2. Thus, the minimum of f can only be attained at some $x \in [-2, 2]$. Since f is continuous, the minimum is indeed attained at some $x \in [-2, 2]$. Moreover, if $x \in (0, 2]$, then $\sin x > 0$ and $f(x) = \frac{1}{2}|x| + \sin x > 0$. Thus, the minimum is attained at some $x \in [-2, 0]$. In particular, it coincides with the minimum of the function $g(x) = -\frac{1}{2}x + \sin x$ on the interval [-2, 0].

The global minimum of g on [-2,0] is attained either at -2, or at 0, or at some $x \in [-2,0]$ where g'(x) = 0. Note that $g(-2) \ge 0$ and g(0) = 0. Also note that $g'(x) = -\frac{1}{2} + \cos x = 0$ if and only if $\cos x = \frac{1}{2}$ if and only if $x = \pm \frac{\pi}{3} + 2\pi k$, where $k \in \mathbb{Z}$. The only x that is in [-2,0] is $x = -\frac{\pi}{3}$, and

$$g(-\frac{\pi}{3}) = \frac{\pi}{6} + \sin(-\frac{\pi}{3}) = \frac{\pi}{6} - \frac{\sqrt{3}}{2}.$$

Since $\frac{\pi}{6} - \frac{\sqrt{3}}{2} \le \frac{4}{6} - \frac{\sqrt{3}}{2} < 0$, we conclude that the global minimum of f is attained at $x = -\frac{\pi}{3}$ and equals $\frac{\pi}{6} - \frac{\sqrt{3}}{2}$.

6. (3 points) Compute the second derivative of the function $f(x) = \sin(\sin x)$. Answer: $-\sin(\sin x)\cos^2 x - \cos(\sin x)\sin x$.

Solution. We compute
$$f'(x) = \cos(\sin x) \cos x$$
,
 $f''(x) = (\cos(\sin x))' \cos x + \cos(\sin x)(\cos x)' = -\sin(\sin x) \cos^2 x - \cos(\sin x) \sin x$.

7. (4 points) Compute the integral

$$\int_{1}^{2} x \ln x dx.$$

Answer: $2\ln 2 - \frac{3}{4}$.

Solution. By the integration by parts formula,

$$\int_{1}^{2} x \ln x dx = \frac{x^{2}}{2} \ln x \Big|_{1}^{2} - \int_{1}^{2} \frac{x^{2}}{2} \frac{dx}{x} = 2 \ln 2 - \frac{1}{2} \frac{x^{2}}{2} \Big|_{1}^{2} = 2 \ln 2 - \frac{3}{4}.$$

8. (4 points) Does the following improper integral converge?

$$\int_0^\infty \frac{\ln(1+x)}{x\sqrt{x}} dx.$$

Answer: yes.

Solution. First note that $\frac{\ln(1+x)}{x\sqrt{x}} > 0$ for all x > 0. We consider separately improper integrals $I_1 = \int_0^1 \frac{\ln(1+x)}{x\sqrt{x}} dx$ and $I_2 = \int_1^\infty \frac{\ln(1+x)}{x\sqrt{x}} dx$.

For the first one, since $\lim_{x\to 0} \frac{\ln(1+x)}{x} = 1$, the integral I_1 converges if and only if the integral with $\frac{\ln(1+x)}{x}$ replaced by 1 converges, i.e., $\int_0^1 \frac{1}{\sqrt{x}} dx$. Since the latter does converge, the integral I_1 also converges.

For the second one, since $\ln(1+x) \leq x^{\frac{1}{4}}$ for all large x, the integral I_2 converges if the integral $\int_1^\infty \frac{x^{\frac{1}{4}}}{x\sqrt{x}} dx = \int_1^\infty \frac{1}{x^{\frac{5}{4}}} dx$ converges. Since the latter does converge, the integral I_2 also converges.

Since both improper integrals I_1 and I_2 converge, the improper integral $\int_0^\infty \frac{\ln(1+x)}{x\sqrt{x}} dx$ also converges.

9. (4 points) Does the following series converge?

$$\sum_{n=1}^{\infty} \sin \frac{1}{\sqrt{n}}$$

Answer: no.

Solution. Since $\lim_{n\to\infty} \frac{\sin\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}} = 1$, the series $\sum_{n=1}^{\infty} \sin\frac{1}{\sqrt{n}}$ converges if and only if the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges. The latter diverges, thus the given series also diverges.

10. (3 points) Write the complex number $\frac{5}{2-i}$ in the algebraic form. Answer: 2 + i.

Solution.

$$\frac{5}{2-i} = \frac{5(2+i)}{(2-i)(2+i)} = \frac{5(2+i)}{4-i^2} = 2+i.$$

- 11. (3 points) Give the definition of the radius of convergence of the complex series $\sum_{n=0}^{\infty} a_n z^n$, where $a_n \in \mathbb{C}, z \in \mathbb{C}$.
- 12. (3 points) Give the definition of linear independence of vectors v_1, \ldots, v_n in the vector space V over a field F.
- 13. (3 points) Are the vector spaces \mathbb{R} and \mathbb{R}^2 isomorphic? Justify your answer. Answer: no.

Solution. The dimension of \mathbb{R} is 1, and the dimension of \mathbb{R}^2 is 2, thus they are not isomorphic.