Exercises 6.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 27.11.2015)

- 1. Compute the derivatives of the following functions (at the points where they exist):
 - (a) $f(x) = \sin(\ln x)$,
 - (b) $f(x) = \ln(1 + \sin x)$,
 - (c) $f(x) = x^x$,
 - (d) $f(x) = (\sin x)^{\cos x} + (\cos x)^{\sin x}$,
 - (e) $f(x) = \arctan\left(\frac{x+1}{x-1}\right)$.
- 2. Find general formulas for derivatives of the following functions for all $n \in \mathbb{N}$:
 - (a) $\left(\frac{\sqrt{1-x}}{\sqrt{1+x}}\right)^{(n)}$, (b) $(x^n e^x)^{(n)}$, (c) $\left(\frac{\ln x}{x}\right)^{(n)}$.
- 3. Compute the first and the second derivatives of the following function for each $x \in \mathbb{R}$:

$$f(x) = \begin{cases} x^4 \sin \frac{1}{x} & \text{if } x \neq 0\\ 0 & \text{if } x = 0. \end{cases}$$

Notice that both derivatives change sign infinitely often to the left and to the right near 0.

4. Identify the intervals on which the following functions are monotone increasing:

$$f(x) = x^2 - x$$
, $g(x) = \sin x$, $h(x) = \frac{x}{1 + x^2}$, $k(x) = \arcsin x$.

5. Find local maxima and minima (if any) of the following functions:

$$f(x) = x^3 + 2x^2$$
, $g(x) = x^5 - 2x^4$, $h(x) = 1 - |x|$, $k(x) = \sin^2 x$.

6. Find the global maximum and minimum of the following functions on the specified intervals:

$$f(x) = x^3 - 3x^2, \ x \in [-1, 4], \quad g(x) = \sin x + \cos^2 x, \ x \in [0, \pi].$$