Exercises 3.2, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 06.11.2015)

1. Which of the following limits exist?

(a)

$$\lim_{x \to 1} \frac{x^2 - 3x + 2}{x^2 - 1},$$
(b)

$$\lim_{x \to 0} \sin \frac{1}{x^2},$$
(c)

$$\lim_{x \to -1} |\text{sign}(x + 1)|.$$

- 2. Use the $\varepsilon \delta$ definition to prove the following limits:
 - (a) $\lim_{x \to 1} 3x + 1 = 4$,
 - (b) $\lim_{x \to 2} x^3 = 8$,
 - (c) $\lim_{x\to 9} \sqrt{x} = 3$,
 - (d) $\lim_{x \to 5} \frac{3+x}{1+3x} = \frac{1}{2}$,
 - (e) $\lim_{x \to -1+} \sqrt{x+1} = 0.$
- 3. Using properties of the limits, compute the following:
 - (a) $\lim_{x \to 1} \frac{x^2 x 2}{x^2 1}$, (b) $\lim_{x \to \infty} \frac{x^2 - x - 2}{x^2 - 1}$, (c) $\lim_{x \to 2} \frac{\sqrt{x} - \sqrt{2}}{x - 2}$.
- 4. Prove that $\lim_{x\to\infty} \frac{x^2}{e^x} = 0$. (Hint: Use the fact that $2^n \ge n^3$ for all $n \ge 10$ to prove that $e^x \ge (x-1)^3$ for all $x \ge 10$.)