Exercises 2.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 30.10.2015)

- 1. Let $\lim_{n \to \infty} a_n = a$. Let (b_n) be a subsequence of (a_n) . Prove that $\lim_{n \to \infty} b_n = a$.
- 2. Prove convergence of the following sequences using Cauchy theorem:
 - (a) $a_n = \frac{1}{n}$, (b) $a_n = \frac{1}{2^n}$, (c) $a_n = \frac{\sin n}{n}$.
- 3. Indentify all cluster points of the following sequences and compute their $\limsup_{n\to\infty}$ and $\liminf_{n\to\infty}$:
 - (a) $\frac{1}{n}$,
 - (b) $(-1)^n$.
- 4. Let a > 0 and $x_1 > 0$. For $n \ge 2$, let $x_n = \frac{1}{2} \left(x_{n-1} + \frac{a}{x_{n-1}} \right)$. Prove that (x_n) is a convergent sequence and identify the limit. What can you say about the speed of convergence of x_n to its limit?

(Hint:

- show that $x_n \ge \sqrt{a}$ for all $n \ge 2$,
- show that $x_{n+1} \leq x_n$ for all $n \geq 2$,
- pass to the limit on the both sides of the recursive formula for x_n and identify the limit.

As for the speed of convergence, prove that $0 \leq x_n - x_{n+1} \leq \frac{1}{2^{n-2}}(x_2 - x_3)$ and deduce from this an upper bound on $x_n - x_{n+k}$ for any k, then pass to the limit as $k \to \infty$.)