Exercises 14.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 05.02.2016)

- 1. Let F be a field. Prove that
 - (a) The multiplicative identity 1 is unique in F, i.e., if for some $\alpha \in F$, $\alpha \cdot \beta = \beta$ for all $\beta \in F$, then $\alpha = 1$.
 - (b) For any $\alpha \in F$, its additive inverse $-\alpha \in F$ is unique.
 - (c) For any $\alpha \in F$, its multiplicative inverse $\alpha^{-1} \in F$ is unique.
- 2. Let V be a vector space over a field F. Prove that
 - (a) For all $\alpha \in F$, $\alpha \cdot \overrightarrow{0} = \overrightarrow{0}$.
 - (b) For all $u \in V$, $0 \cdot u = \overrightarrow{0}$.
 - (c) For all $u \in V$, $(-1) \cdot u = -u$.
- 3. Let V be a vector space over a field F. Let u_1, \ldots, u_n be linearly independent, and v_1, \ldots, v_m complete system of vectors. Prove that $n \leq m$.
- 4. Let T be an isomorphism between vector spaces V_1 and V_2 . Prove that
 - (a) $T(\overrightarrow{0_{V_1}}) = \overrightarrow{0_{V_2}}$, i.e., the zero vector of V_1 is mapped to the zero vector of V_2 .
 - (b) For all $u \in V_1$, T(-u) = -T(u), i.e., additive inverses are mapped to additive inverses.
 - (c) If u_1, \ldots, u_n are linearly independent in V_1 , then $T(u_1), \ldots, T(u_n)$ are linearly independent in V_2 .
- 5. Let V_1, V_2, V_3 be vector spaces over a field F. Prove that
 - (a) $V_1 \cong V_1$,
 - (b) if $V_1 \cong V_2$, then $V_2 \cong V_1$,
 - (c) if $V_1 \cong V_2$ and $V_2 \cong V_3$, then $V_1 \cong V_3$.

Properties (a)-(c) state that \cong is an *equivalence relation* on vector spaces.

- 6. Let U_1 and U_2 be vector subspaces of a vector space V.
 - (a) Prove that $U_1 \cap U_2$ and $U_1 + U_2$ are vector subspaces of V.
 - (b) If U_1 is a vector subspace of U_2 , prove that $U_1 \cap U_2 = U_1$ and $U_1 + U_2 = U_2$.