Exercises 13.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 29.01.2016)

- 1. Prove that any 4 vectors in the space are linearly dependent.
- 2. Let e_1, e_2, e_3 be the right-hand oriented basis. What is the orientation of (a) e_1, e_3, e_2 , (b) e_2, e_1, e_3 , (c) e_2, e_3, e_1 , (d) e_3, e_1, e_2 , (e) e_3, e_2, e_1 ?
- 3. Let e_1, e_2, e_3 be an orthonormal basis with right-hand orientation. If u and v are vectors with coordinates (1, 2, 1) and (1, 1, 0), respectively, what are the coordinates of $u \times v$?
- 4. Let e_1, e_2, e_3 be an orthonormal basis with right-hand orientation. Let $a \in \mathbb{R}$. Let u, v, w be vectors with coordinates (1, 2, 1), (1, 1, 0), and (a, 1, 1), respectively. Identify all a for which u, v, w is (a) a basis, (b) a right-hand oriented basis.
- 5. Prove that

$$u \times (v \times w) = (u, w)v - (u, v)w.$$

[Hint: Consider a right-hand oriented orthonormal basis e_1, e_2, e_3 such that (a) the coordinates of w are $(w_1, 0, 0)$, i.e., e_1 is collinear with w, (b) the coordinates of v are $(v_1, v_2, 0)$, i.e., e_2 is coplanar with v and w, and (c) the coordinates of u are (u_1, u_2, u_3) . Compute coordinates of $u \times (v \times w)$ and (u, w)v - (u, v)w in this basis.]

6. Prove the Jacobi identity:

$$u \times (v \times w) + v \times (w \times u) + w \times (u \times v) = 0.$$