Exercises 1.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 23.10.2015)

- 1. Write the following sets as unions of intervals:
 - (a) $A = \{x : x^2 3x + 2 \le 0\},\$
 - (b) $B = \{x : x^2 3x + 2 \ge 0\},\$
 - (c) $C = \{x : x^2 3x > 3\},\$
 - (d) $D = \{x : x^2 5 > 2x\},\$
 - (e) $E = \{t : t^2 3t + 2 \le 0\},\$
 - (f) $F = (\{1\} \cup \{2,3\}) \cap (0,4),$
 - (g) $G = \{\theta : \sin \theta = \frac{1}{2}\},\$
 - (h) $H = \{\varphi : \cos \varphi > 0\}.$
- 2. Let A and B be intervals. Is $A \cap B$ an interval? What about $A \cup B$?
- 3. Prove that the following numbers are rational:
 - (a) x = 0.313131...,
 - (b) y = 0,273273273...
 - (c) z = 0.2154154154...

(Hint: Note that 100x = x + 31.)

4. Let A and B be two sets. Define their sum and difference as

$$A + B = \{a + b : a \in A, b \in B\}, \qquad A - B = \{a - b : a \in A, b \in B\}.$$

Prove that $\sup(A+B) = \sup A + \sup B$. Prove that $\sup(A-B) = \sup A - \inf B$.

- 5. Prove that \mathbb{Q} is countable.
- 6. Let $A \subseteq B$. Prove that if A is uncountable, then B is also uncountable.