Exercises 10.1, Mathematics 1 (12-PHY-BIPMA1) Artem Sapozhnikov (submit by 08.01.2016)

- 1. Find the area bounded by the curve y = x(2-x) and the line $y = \frac{1}{2}x$.
- 2. Find the volume of the solid of the revolution of the curve $y = \sin x, x \in [0, \pi]$ around x-axis.
- 3. Find the length of the parabola $y = x^2$, $x \in [0, 1]$.
- 4. The cycloid is a curve defined by $x(t) = a(t-\sin t)$ and $y(t) = a(1-\cos t)$, $t \in [0, 2\pi]$. Find the area bounded by the cycloid and the x-axis. Find the length of the cycloid. [Hint: To compute the area, use the formula $\int_0^{2\pi} y dx$, where dx = x'(t)dt.]
- 5. Compute the improper integrals:

(a)
$$\int_{2}^{+\infty} \frac{dx}{(x-1)^2}$$
, (b) $\int_{0}^{1} \frac{dx}{\sqrt{1-x}}$, (c) $\int_{0}^{+\infty} e^{-x} dx$, (d) $\int_{e}^{+\infty} \frac{dx}{x(\ln x)^2}$.

6. Identify all $\alpha > 0$ for which the following improper integrals converge:

(a)
$$\int_{2}^{+\infty} \frac{dx}{x(\ln x)^{\alpha}},$$
 (b)
$$\int_{2}^{+\infty} \frac{dx}{x^{2}(\ln x)^{\alpha}},$$
 (c)
$$\int_{2}^{+\infty} \frac{dx}{\sqrt{x}(\ln x)^{\alpha}},$$
 (d)
$$\int_{1}^{+\infty} \frac{\sin x}{x^{\alpha}} dx,$$
 (e)
$$\int_{1}^{+\infty} \frac{\cos x}{x^{\alpha}} dx,$$
 (f)
$$\int_{1}^{+\infty} \frac{\ln x}{x^{\alpha}} dx,$$
 (g)
$$\int_{1}^{2} \frac{dx}{(\ln x)^{\alpha}},$$
 (h)
$$\int_{0}^{1} \frac{\sin x}{x^{\alpha}} dx.$$