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SYLLABUS

1 Measure theory

• Outer Lebesgue measure on Rd, µ∗. Properties:

1. µ∗(∅) = 0,

2. E ⊂ F implies µ∗(E) ≤ µ∗(F ),

3. µ∗(∪∞i=1Ei) ≤
∑∞

i=1 µ
∗(Ei),

4. if dist(E,F ) > 0 then µ∗(E ∪ F ) = µ∗(E) + µ∗(F )

5. for pairwise almost disjoint elementary sets Bi, µ
∗(∪∞i=1Bi) =

∑∞
i=1m(Bi).

Null set. Any countable set is a null set. Cantor set is an uncountable null set.

Proposition (outer regularity of µ∗): µ∗(E) = infO⊇E,open µ
∗(O).

• Lebesgue measure. Lebesgue measurable set. Properties:

1. open/closed/null sets are Lebesgue measurable

2. a complement of a Lebesgue measurable set is Lebesgue measurable

3. a countable union of Lebesgue measurable sets is Lebesgue measurable

4. every Jordan measurable set is Lebesgue measurable.

Lebesgue measure µ. Properties:

1. (countable additivity) if Ei are pairwise disjoint Lebesgue measurable sets,
then µ(∪∞i=1Ei) =

∑∞
i=1 µ(Ei)

2. if E1 ⊆ E2 ⊆ . . . are Lebesgue measurable, then µ(∪∞i=1Ei) = limn→∞ µ(En)

3. if E1 ⊇ E2 ⊇ . . . are Lebesgue measurable and µ(E1) < ∞, then µ(∩∞i=1Ei) =
limn→∞ µ(En)

4. (translation invariance) if E is Lebesgue measurable then for any x ∈ Rd, x+E
is Lebesgue measurable and µ(x+ E) = µ(E).

Example of a non-measurable set.

• Lebesgue measurable function.

Lemma: f : Rd → R is Lebesgue measurable if and only if the sets {x ∈ Rd :
f(x) < λ} are Lebesgue measurable for all λ ∈ R.

Properties of Lebesgue measurable functions:

1. any continuous function is Lebesgue measurable

2. if fn are Lebesgue measurable then lim supn→∞ fn(x) is Lebesgue measurable

3. if f is Lebesgue measurable and g is continuous then g(f(x)) is Lebesgue
measurable



4. if f, g are Lebesgue measurable, then f + g, fg are Lebesgue measurable

Construction of Lebesgue integral on Rd (simple/non-negative/real/complex mea-
surable functions).

• Almost everywhere. Properties:

1. if P (x) holds a.e. and P (x) implies Q(x) then Q(x) holds a.e.

2. if Pi(x) hold a.e. for each i, then P (x) = {all Pi(x) hold simultaneously for i =
1, 2, . . .} holds a.e.

3. if f = g a.e., then f is Lebesgue measurable if and only if g is Lebesgue
measurable

4. Lebesgue integral does not depend on values of function on a set of measure 0

5. if f : Rd → [0,∞) is Lebesgue measurable, then
´
Rd f(x)dx = 0 if and only if

f(x) = 0 a.e.

6. if 0 ≤ f(x) ≤ g(x) a.e., then 0 ≤
´
Rd f(x)dx ≤

´
Rd g(x)dx.

• σ-algebra. Measurable space.

Proposition: If Bα, α ∈ I, are σ-algebras on X, then ∩α∈IBα is a σ-algebra on X.

σ-algebra generated by a family A of subsets of X, σ(A)

Borel σ-algebra, B(X). Borel measurable set.

Coarser and finer σ-algebras.

Proposition: The σ-algebra of Lebesgue measurable sets is generated by Borel mea-
surable sets and null sets.

Proposition: B(R) = σ((−∞, a], a ∈ R) = σ((a, b], a, b ∈ R) = σ([a, b], a, b ∈ R).

Product σ-algebra.

Proposition: B(Rm+n) = B(Rm)⊗ B(Rn).

• Measure. Definition of measure. Measure space. Examples.

Properties: if (X,B, µ) is a measure space and Ai ∈ B, then

1. µ(∪∞i=1Ai) ≤
∑∞

i=1 µ(Ai)

2. if A1 ⊆ A2 ⊆ . . ., then µ(∪∞i=1Ai) = limn→∞ µ(An)

3. if A1 ⊇ A2 ⊇ . . . and µ(A1) <∞, then µ(∩∞i=1Ai) = limn→∞ µ(An)

Carathéodory extension theorem: For any set X, an algebra A on X and a pre-
measure µ0 onA, there exists an extension of µ0 to a measure on σ(A). Furthermore,
if µ0 is sigma-finite, then the extension is unique.

Lebesgue-Stiltjes measure. Examples.

Product measure.
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• Measurable function. Definition.

Proposition: If f : (X,B) → (X ′,B′) and B′ = σ(A′), then f is measurable if and
only if f−1(A′) ∈ B for all A′ ∈ A′.
Borel function.

Properties of measurable functions:

1. f is a Borel function on (X,B) if and only if {x ∈ X : f(x) > λ} ∈ B for all
λ ∈ R

2. χE(x) is Borel if and only if E ∈ B
3. f : X → R is measurable if and only if f+ and f− are measurable

4. f, g : X → R are measurable, then f + g, fg are measurable.

• Lebesgue integral. Construction of Lebesgue integral on a (complete) measure space
(X,B, µ).

Properties:

1. if f = g µ-a.e., then
´
X
fdµ =

´
X
gdµ

2. if f ≤ g µ-a.e., then
´
X
fdµ ≤

´
X
gdµ

3. for f ≥ 0 µ-a.e.,
´
X
fdµ = 0 if and only if f = 0 µ-a.e.

4. (linearity)
´
X

(af + bg)dµ = a
´
X
fdµ+ b

´
X
gdµ.

Monotone convergence theorem: If 0 ≤ f1 ≤ f2 ≤ . . . are measurable functions on
(X,B, µ), then

lim
n→∞

ˆ
X

fndµ =

ˆ
X

( lim
n→∞

fn)dµ.

Fatou’s lemma: If f1, f2, . . . : X → [0,∞) are measurable functions on (X,B, µ),
then ˆ

X

lim inf
n→∞

fndµ ≤ lim inf
n→∞

ˆ
X

fndµ.

Dominated convergence theorem: If f1, f2, . . . is a sequence of measurable functions
on (X,B, µ) converging to f and such that for some measurable function F : X →
[0,∞) (1) |fn| ≤ F µ-a.e. and (2)

´
X
Fdµ <∞, then

lim
n→∞

ˆ
X

fndµ =

ˆ
X

fdµ.

Fubini theorem: Let (X,BX , µX) and (Y,BY , µY ) be measure spaces and f : X ×
Y → R a measurable function with respect to BX⊗BY . If

´
X×Y |f(x, y)|dµX⊗µY <

∞, then

ˆ
X×Y

f(x, y)dµX ⊗ µY =

ˆ
X

(ˆ
Y

f(x, y)dµY

)
dµX =

ˆ
Y

(ˆ
X

f(x, y)dµX

)
dµY .
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• Lp spaces. Space Lp(X,µ). Seminorm ‖ · ‖p on Lp(X,µ).

Normed space Lp(X,µ).

Proposition: Lp(X,µ) is a Banach space.

Theorem: Let X be a metric space, µ a σ-finite measure on (X,B(X)) such that
for every Borel set A and every ε > 0, there exist closed C and open O such that
C ⊆ A ⊆ O and µ(O \ C) < ε. Then continuous functions on X are dense in
Lp(X,µ), i.e., for any ε > 0 and f ∈ Lp there exists a continuous g such that
‖f − g‖p < ε.

2 Functional analysis

• Review of metric, normed, inner product spaces

• Hilbert space. Orthogonality. Orthogonal system, orthonormal system, orthonormal
basis.

Theorem: Any Hilbert space has an orthonormal basis.

Theorem: Let X be a Hilbert space, {xα}α∈I an orthonormal basis. Then for x ∈ X,

1. only countably many α ∈ I satisfy 〈x, xα〉 6= 0,

2. x =
∑

α∈I〈x, xα〉xα
3. ‖x‖2 =

∑
α∈I |〈x, xα〉|2 (Parseval’s identity).

Lemma (Bessel’s inequality): Let X be an inner product space and {x1, . . . , xN} an
orthonormal system, then for each x ∈ X, ‖x‖2 ≥

∑N
i=1 |〈x, xi〉|2.

Theorem: A Hilbert space is separable if and only if it has a countable orthonormal
basis.

Lemma (Gram-Schmidt orthogonalization): Let y1, . . . be a linearly independent
system. Then there exists an orthonormal system x1, . . . such that for each k ≥ 1,

span(y1, . . . , yk) = span(x1, . . . , xk).

Isomorphism of inner product spaces.

Theorem: Let X be a separable Hilbert space. Then

1. if dim(X) = N <∞, then X is isomorphic to CN (or RN)

2. if dim(X) =∞, then X is isomorphic to `2.

Orthogonal complement Y ⊥.

Theorem (projection theorem): Let X be a Hilbert space and Y a closed subspace.
Then for each x ∈ X there exist unique y ∈ Y and y′ ∈ Y ⊥ such that x = y + y′.

Lemma: Let X be a Hilbert space, Y a closed subspace and x ∈ X. Then there
exists a unique y0 ∈ Y closest to x.
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Direct sum of Hilbert spaces, X ⊕ Y .

Theorem (Fourier series): The functions { 1√
2π
einx, n ∈ Z} form an orthonormal

basis of L2[0, 2π] and for any f ∈ L2[0, 2π], f(x) = limN→∞
∑N

n=−N cn
1√
2π
einx in

L2[0, 2π], where cn = 1√
2π

´ 2π
0
f(x)e−inxdx.

• Continous linear functionals.

Proposition: Let X be a normed space. f : X → C is a continous linear functional
if and only if f is continous at 0.

Proposition: If dim(X) <∞ then any linear functional on X is continous.

Dual space X∗.

Bounded linear functional.

Proposition: Let X be a normed space. f : X → C is a continous linear functional
if and only if f is bounded.

The norm of f , ‖f‖.
Proposition: (X∗, ‖ · ‖) is a Banach space.

Examples of bounded linear functionals. Examples of X∗.

Proposition: `∗p = `q, 1 ≤ p <∞, 1
p

+ 1
q

= 1.

`∗∞ 6= `1.

Theorem (Riesz lemma): Let X be a Hilbert space. For any f ∈ X∗ there exists a
unique yf ∈ X such that f(x) = 〈x, yf〉 for all x ∈ X and ‖f‖X∗ = ‖yf‖X .

Theorem (Hahn-Banach): Let X be a normed space, Y a subspace of X and f0 ∈
Y ∗. Then there exists f ∈ X∗ such that (1) f(y) = f0(y) for y ∈ Y and (2)
‖f‖X∗ = ‖f0‖Y ∗ .

Corollaries:

1. For any x0 6= 0, there exists f ∈ X∗ such that ‖f‖ = 1 and f(x0) = ‖x0‖.
In particular, if f(x) = 0 for all x ∈ X∗, then x = 0.

2. Let L be a subspace of X, x0 ∈ X such that the distance from x0 to L is d > 0.
Then there exists f ∈ X∗ such that f(x0) = 1, f(x) = 0 for all x ∈ L and
‖f‖ = 1

d
.

In particular, if L is a vector subspace of X, then L = X if and only if the
only f ∈ X∗ such that f(x) = 0 for all x ∈ L is the zero functional.

Theorem: Let X be a Banach space. If X∗ is separable, then X is separable.

Reflexive spaces. Examples.

• Continuous operator. Bounded operator.

Proposition: Let X, Y be normed spaces and A : X → Y a linear operator.

1. A is continuous if and only if A is continuous at 0 ∈ X.
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2. A is continuous if and only if A is bounded.

3. If dim(X) <∞ then A is continuous.

Operator norm.

Theorem: If Y is a Banach space, then (L(X, Y ), ‖ · ‖) is also Banach.

Examples: integral operators, convolution operators, inclusion, projection.

Composition of operators. Series of operators. Operator exponent eA.

Inverse operator.

Proposition: If A : X → Y is linear invertible, then A−1 is also linear.

Theorem: Let X, Y be normed spaces and A ∈ L(X, Y ). If Im(A) = Y and there
exists m > 0 such that for all x ∈ X, ‖Ax‖Y ≥ m‖x‖X , then A is invertible and
A−1 ∈ L(Y,X).

Theorem (Neumann): Let X be Banach, A ∈ L(X). If
∑∞

n=0A
n converges, then

there exists (I − A)−1 =
∑∞

n=0A
n ∈ L(X). In particular, if ‖A‖ < 1, then there

exists (I − A)−1 and ‖(I − A)−1‖ ≤ 1
1−‖A‖ .

Theorem (Banach): Let X, Y be Banach spaces, A ∈ L(X, Y ). If A is bijective,
then A−1 ∈ L(Y,X).

Corollary: Let (X, ‖·‖0) and (X, ‖·‖1) be Banach spaces such that for some M <∞
and all x ∈ X, ‖x‖1 ≤M‖x‖0. Then the two norms are equivalent.

Proposition: Let X be a Banach space. Then G = {A ∈ L(X) : A−1 ∈ L(X)} is
open in L(X).

• Spectrum.

Resolvent set ρ(A). Spectrum σ(A).

Proposition: Let X be a Banach space and A ∈ L(X). Then

1. ρ(A) is open

2. ρ(A) ⊇ {λ ∈ C : |λ| > ‖A‖}.

Proposition: Let X be a Banach space and A ∈ L(X). Then

1. σ(A) 6= ∅
2. σ(A) is closed

3. σ(A) ⊆ {λ ∈ C : |λ| ≤ ‖A‖}
4. if λ ∈ σ(A) then λn ∈ σ(An).

Point spectrum σp(A), residual spectrum σr(A), continuous spectrum σc(A).

Spectral radius rσ(A).

Theorem: Let X be a Banach space and A ∈ L(X). Then rσ(A) = limn→∞ ‖An‖
1
n .
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• Adjoint operators.

Theorem: Let X be a Hilbert space and A ∈ L(X). Then there exists a unique A∗

and ‖A∗‖ = ‖A‖.
Properties of A∗.

Proposition: λ ∈ σ(A) if and only if λ ∈ σ(A∗).

Theorem: Let X be a Hilbert space and A ∈ L(X). Then

1. if λ ∈ σr(A) then λ ∈ σp(A∗)
2. if λ ∈ σp(A) then λ ∈ σp(A∗) ∪ σr(A∗)
3. λ ∈ σc(A) if and only if λ ∈ σc(A∗).

Spectrum of a shift operator in `2.

Self-adjoint operator. Unitary operator.

Proposition: If A∗ = A, then

1. 〈Ax, x〉 ∈ R
2. σ(A) ⊂ R
3. σr(A) = ∅
4. ‖A‖ = sup‖x‖=1 |〈Ax, x〉|
5. rσ(A) = ‖A‖.

Proposition: If A is unitary, then

1. ‖A‖ = 1

2. σ(A) ⊆ {λ ∈ C : |λ| = 1}.

Theorem (Hellinger-Toeplitz): Let X be a Hilbert space and A : X → X linear
operator such that 〈Ax, y〉 = 〈x,Ay〉 for all x, y ∈ X. Then A ∈ L(X).

• Compact operator.

Proposition: Let X, Y be normed spaces, A : X → Y a linear operator.

1. If A is compact, then A is bounded.

2. If A is bounded and rank(A) <∞, then A is compact.

3. If A,B are compact, then A+B is compact.

4. If A is compact and B bounded, then AB and BA are compact.

5. id : X → X is compact if and only if dim(X) <∞.

6. If dim(X) =∞ and A is compact, then A does not have bounded inverse.

7. If An are compact and An → A, then A is compact.

Theorem (Riesz-Schauder): Let X be a Hilbert space and A a compact operator.
Then
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1. σ(A) is at most countable, its set of accumulation points is contained in {0}.
2. if λ ∈ σ(A) \ {0}, then λ ∈ σp(A) and dim ker(λI − A) <∞.

Theorem (Hilbert-Schmidt): Let X be a separable Hilbert space, A a compact self-
adjoint operator. Then there exists an orthonormal basis of X, e1, e2, . . . and λi ∈ R
such that Aei = λei.

3 Differential geometry

• Surfaces in R3. Local coordinates. Tangent plane.

First fundamental form. Second fundamental form.

Normal curvature in direction v.

Lemma: If A,B are symmetric bilinear forms on a vector space V and A is positive
definite, then there exists a basis of V in which the matrix of A is the identity matrix
and the matrix of B is diagonal.

Principal curvatures k1, k2. Principal directions e1, e2.

Remark: e1, e2 is an orthonormal basis of the tangent plane and ki is a normal
curvature in direction ei.

Theorem (Euler): For any tangent vector v, II(v,v)
I(v,v)

= k1 cos2 ϕ + k2 sin2 ϕ, where ϕ
is an angle between v and e1.

Corollary: k1, k2 are extremal curvatures.

Gaussian curvature K. Mean curvature H.

Gauss equations. Christoffel symbols (of the second kind).

Einstein summation convention.

Theorem:

Γkij =
1

2
glk
(
∂gil
∂uj

+
∂gjl
∂ui
− ∂gij
∂ul

)
.

That is, the Christoffel symbols are determined by the first fundamental form.

Theorem (Gauss):

K =
1

g11g22 − g212

(
(Γk12Γ

l
12 − Γk11Γ

l
22)gkl +

∂2g12
∂u1∂u2

− 1

2

∂2g11
∂u2∂u2

− 1

2

∂2g22
∂u1∂u1

)
.

That is, the Gaussian curvature is expressed only through the coefficients of the
first fundamental form and their derivatives.

Covariant derivative of a vector field v along a vector field w, ∇wv.

Proposition:

1. (v, w) 7→ ∇wv is bilinear
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2. for any smooth f : U → R,

∇fwv = f∇wv ∇w(fv) = Dwf v + f∇wv,

where Dwf = ∂f
∂uj
wj is the derivative of f in direction w

3. ∇rjri = Γkij rk

4. Γkij = Γkji

5. for any smooth vector fields a, b, w,

Dw〈a, b〉 = 〈∇wa, b〉+ 〈a,∇wb〉.

Remarks:

1. Any bilinear function that satisfies 2. above is an affine connection.

2. Christoffel symbols determine ∇wv

3. 4. states that ∇wv is symmetric

4. 5. states that ∇wv is compatible with the metric.

• Topological spaces. Definition.

Base of topology. Neighborhood. Continuous function.

Hausdorff space. Second countable space.

Homeomorphism of topological spaces.

• Manifolds. Definition.

Local chart (U,ϕ). Atlas {(Uα, ϕα), α ∈ I}. Local coordinates (x1α, . . . x
n
α). Transi-

tion mappings.

Lie group.

Smooth structure on a manifold. Smooth manifold. Smooth mapping f : M → N
(M,N smooth manifolds). Smooth function, smooth path.

Equivalence of atlases.

Theorem (level set theorem): Let U ⊆ Rn open, f : U → Rm a smooth mapping,

y ∈ Rm. If for each x ∈M = f−1(y), rank(∂f
j

∂xi
) = m, then M is a manifold.

Example: SL(n,R).

• Tangent space.

Tangent vector (as an equivalence class of curves, in local coordinates and as a
derivation). Tangent space TpM .

The basis ∂
∂x1α

, . . . , ∂
∂xnα

.

Tangent bundle TM .

Theorem: Let M be a smooth manifold. There exists a smooth structure on TM
such that
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1. the projection π : TM →M , π(p, v) = p is a smooth mapping

2. for each p ∈ M , there exists a neighborhood U and a diffeomorphism f :
π−1(U)→ U × Rn such that π(f−1(p, v)) = p.

Examples: TR, TS1.

Covector. Tensor. Metric tensor. Riemannian manifold.

• Affine connection. Vector field. Covariant derivative. Christoffel symbols.

Torsion. Symmetric connection.

Affine connection for tensors.

Parallel transport of a tangent vector along a smooth curve.

Lemma: Let g be a (pseudo)metric on a smooth manifold M . The following claims
are equivalent:

1. for any vector field w, ∇wgij = 0

2. for any smooth curve γ and v, w vector fields parallel along γ, d
dt
〈v(t), w(t)〉 = 0

3. for any smooth curve γ and v, w vector fields on γ,

d

dt
〈v(t), w(t)〉 = 〈∇γ̇ v(t), w(t)〉+ 〈v(t),∇γ̇ w(t)〉.

Connection compartible with metric. Levi-Civita connection.

Theorem (Levi-Civita): For any Riemannian manifold, there exists a unique sym-
metric connection compartible with the metric. Furthermore,

Γkij =
1

2
gkl
(
∂gil
∂xj

+
∂gjl
∂xi
− ∂gij
∂xl

)
.

• Curvature. Non-commutativity of parallel transport. Curvature tensor (in local
coordinates, using notation of affine connection).

Proposition:

1. R(u, v)w = −R(v, u)w

2. for symmetric connection,

R(u, v)w +R(v, w)u+R(w, u)v = 0

3. for connection compartible with metric, 〈R(u, v)w, z〉 = −〈w,R(u, v)z〉
4. for Levi-Civita connection, 〈R(u, v)w, z〉 = 〈R(w, z)u, v〉.

Sectional curvature.

Ricci tensor.
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