SYLLABUS

1 Measure theory

- Outer Lebesgue measure on \mathbb{R}^d , μ^* . Properties:
 - 1. $\mu^*(\emptyset) = 0$,
 - 2. $E \subset F$ implies $\mu^*(E) \le \mu^*(F)$,
 - 3. $\mu^*(\bigcup_{i=1}^{\infty} E_i) \le \sum_{i=1}^{\infty} \mu^*(E_i),$
 - 4. if dist(E,F) > 0 then $\mu^*(E \cup F) = \mu^*(E) + \mu^*(F)$
 - 5. for pairwise almost disjoint elementary sets B_i , $\mu^*(\bigcup_{i=1}^{\infty} B_i) = \sum_{i=1}^{\infty} m(B_i)$.

Null set. Any countable set is a null set. Cantor set is an uncountable null set.

Proposition (outer regularity of μ^*): $\mu^*(E) = \inf_{O \supseteq E, \text{open}} \mu^*(O)$.

- Lebesgue measure. Lebesgue measurable set. Properties:
 - 1. open/closed/null sets are Lebesgue measurable
 - 2. a complement of a Lebesgue measurable set is Lebesgue measurable
 - 3. a countable union of Lebesgue measurable sets is Lebesgue measurable
 - 4. every Jordan measurable set is Lebesgue measurable.

Lebesgue measure μ . Properties:

- 1. (countable additivity) if E_i are pairwise disjoint Lebesgue measurable sets, then $\mu(\cup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} \mu(E_i)$
- 2. if $E_1 \subseteq E_2 \subseteq \ldots$ are Lebesgue measurable, then $\mu(\bigcup_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu(E_n)$
- 3. if $E_1 \supseteq E_2 \supseteq \ldots$ are Lebesgue measurable and $\mu(E_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} E_i) = \lim_{n \to \infty} \mu(E_n)$
- 4. (translation invariance) if E is Lebesgue measurable then for any $x \in \mathbb{R}^d$, x + E is Lebesgue measurable and $\mu(x + E) = \mu(E)$.

Example of a non-measurable set.

• Lebesgue measurable function.

Lemma: $f : \mathbb{R}^d \to \mathbb{R}$ is Lebesgue measurable if and only if the sets $\{x \in \mathbb{R}^d : f(x) < \lambda\}$ are Lebesgue measurable for all $\lambda \in \mathbb{R}$.

Properties of Lebesgue measurable functions:

- 1. any continuous function is Lebesgue measurable
- 2. if f_n are Lebesgue measurable then $\limsup_{n\to\infty} f_n(x)$ is Lebesgue measurable
- 3. if f is Lebesgue measurable and g is continuous then g(f(x)) is Lebesgue measurable

4. if f, g are Lebesgue measurable, then f + g, fg are Lebesgue measurable

Construction of Lebesgue integral on \mathbb{R}^d (simple/non-negative/real/complex measurable functions).

- Almost everywhere. Properties:
 - 1. if P(x) holds a.e. and P(x) implies Q(x) then Q(x) holds a.e.
 - 2. if $P_i(x)$ hold a.e. for each *i*, then $P(x) = \{ all \ P_i(x) \text{ hold simultaneously for } i = 1, 2, \ldots \}$ holds a.e.
 - 3. if f = g a.e., then f is Lebesgue measurable if and only if g is Lebesgue measurable
 - 4. Lebesgue integral does not depend on values of function on a set of measure 0
 - 5. if $f : \mathbb{R}^d \to [0, \infty)$ is Lebesgue measurable, then $\int_{\mathbb{R}^d} f(x) dx = 0$ if and only if f(x) = 0 a.e.

6. if
$$0 \le f(x) \le g(x)$$
 a.e., then $0 \le \int_{\mathbb{R}^d} f(x) dx \le \int_{\mathbb{R}^d} g(x) dx$.

• σ -algebra. Measurable space.

Proposition: If \mathcal{B}_{α} , $\alpha \in I$, are σ -algebras on X, then $\cap_{\alpha \in I} \mathcal{B}_{\alpha}$ is a σ -algebra on X.

 σ -algebra generated by a family \mathcal{A} of subsets of X, $\sigma(\mathcal{A})$

Borel σ -algebra, $\mathcal{B}(X)$. Borel measurable set.

Coarser and finer σ -algebras.

Proposition: The σ -algebra of Lebesgue measurable sets is generated by Borel measurable sets and null sets.

Proposition: $\mathcal{B}(R) = \sigma((-\infty, a], a \in \mathbb{R}) = \sigma((a, b], a, b \in \mathbb{R}) = \sigma([a, b], a, b \in \mathbb{R}).$

Product σ -algebra.

Proposition: $\mathcal{B}(\mathbb{R}^{m+n}) = \mathcal{B}(\mathbb{R}^m) \otimes \mathcal{B}(\mathbb{R}^n).$

• Measure. Definition of measure. Measure space. Examples.

Properties: if (X, \mathcal{B}, μ) is a measure space and $A_i \in \mathcal{B}$, then

- 1. $\mu(\bigcup_{i=1}^{\infty} A_i) \leq \sum_{i=1}^{\infty} \mu(A_i)$
- 2. if $A_1 \subseteq A_2 \subseteq \ldots$, then $\mu(\bigcup_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$
- 3. if $A_1 \supseteq A_2 \supseteq \ldots$ and $\mu(A_1) < \infty$, then $\mu(\bigcap_{i=1}^{\infty} A_i) = \lim_{n \to \infty} \mu(A_n)$

Carathéodory extension theorem: For any set X, an algebra \mathcal{A} on X and a premeasure μ_0 on \mathcal{A} , there exists an extension of μ_0 to a measure on $\sigma(\mathcal{A})$. Furthermore, if μ_0 is sigma-finite, then the extension is unique.

Lebesgue-Stiltjes measure. Examples.

Product measure.

• Measurable function. Definition.

Proposition: If $f : (X, \mathcal{B}) \to (X', \mathcal{B}')$ and $\mathcal{B}' = \sigma(\mathcal{A}')$, then f is measurable if and only if $f^{-1}(\mathcal{A}') \in \mathcal{B}$ for all $\mathcal{A}' \in \mathcal{A}'$.

Borel function.

Properties of measurable functions:

- 1. f is a Borel function on (X, \mathcal{B}) if and only if $\{x \in X : f(x) > \lambda\} \in \mathcal{B}$ for all $\lambda \in \mathbb{R}$
- 2. $\chi_E(x)$ is Borel if and only if $E \in \mathcal{B}$
- 3. $f: X \to \mathbb{R}$ is measurable if and only if f_+ and f_- are measurable
- 4. $f, g: X \to \mathbb{R}$ are measurable, then f + g, fg are measurable.
- Lebesgue integral. Construction of Lebesgue integral on a (complete) measure space (X, \mathcal{B}, μ) .

Properties:

- 1. if $f = g \mu$ -a.e., then $\int_X f d\mu = \int_X g d\mu$
- 2. if $f \leq g \mu$ -a.e., then $\int_X f d\mu \leq \int_X g d\mu$
- 3. for $f \ge 0$ μ -a.e., $\int_X f d\mu = 0$ if and only if f = 0 μ -a.e.
- 4. (linearity) $\int_X (af + bg) d\mu = a \int_X f d\mu + b \int_X g d\mu$.

Monotone convergence theorem: If $0 \leq f_1 \leq f_2 \leq \ldots$ are measurable functions on (X, \mathcal{B}, μ) , then

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X (\lim_{n \to \infty} f_n) d\mu.$$

Fatou's lemma: If $f_1, f_2, \ldots : X \to [0, \infty)$ are measurable functions on (X, \mathcal{B}, μ) , then

$$\int_X \liminf_{n \to \infty} f_n d\mu \le \liminf_{n \to \infty} \int_X f_n d\mu.$$

Dominated convergence theorem: If f_1, f_2, \ldots is a sequence of measurable functions on (X, \mathcal{B}, μ) converging to f and such that for some measurable function $F: X \to [0, \infty)$ (1) $|f_n| \leq F \mu$ -a.e. and (2) $\int_X F d\mu < \infty$, then

$$\lim_{n \to \infty} \int_X f_n d\mu = \int_X f d\mu.$$

Fubini theorem: Let $(X, \mathcal{B}_X, \mu_X)$ and $(Y, \mathcal{B}_Y, \mu_Y)$ be measure spaces and $f : X \times Y \to \mathbb{R}$ a measurable function with respect to $\mathcal{B}_X \otimes \mathcal{B}_Y$. If $\int_{X \times Y} |f(x, y)| d\mu_X \otimes \mu_Y < \infty$, then

$$\int_{X \times Y} f(x, y) d\mu_X \otimes \mu_Y = \int_X \left(\int_Y f(x, y) d\mu_Y \right) d\mu_X = \int_Y \left(\int_X f(x, y) d\mu_X \right) d\mu_Y.$$

• L^p spaces. Space $\mathcal{L}^p(X,\mu)$. Seminorm $\|\cdot\|_p$ on $\mathcal{L}^p(X,\mu)$.

Normed space $L^p(X, \mu)$.

Proposition: $L^p(X,\mu)$ is a Banach space.

Theorem: Let X be a metric space, $\mu \neq \sigma$ -finite measure on $(X, \mathcal{B}(X))$ such that for every Borel set A and every $\varepsilon > 0$, there exist closed C and open O such that $C \subseteq A \subseteq O$ and $\mu(O \setminus C) < \varepsilon$. Then continuous functions on X are dense in $L^p(X, \mu)$, i.e., for any $\varepsilon > 0$ and $f \in L^p$ there exists a continuous g such that $\|f - g\|_p < \varepsilon$.

2 Functional analysis

- Review of metric, normed, inner product spaces
- *Hilbert space.* Orthogonality. Orthogonal system, orthonormal system, orthonormal basis.

Theorem: Any Hilbert space has an orthonormal basis.

Theorem: Let X be a Hilbert space, $\{x_{\alpha}\}_{\alpha \in I}$ an orthonormal basis. Then for $x \in X$,

1. only countably many $\alpha \in I$ satisfy $\langle x, x_{\alpha} \rangle \neq 0$,

2.
$$x = \sum_{\alpha \in I} \langle x, x_{\alpha} \rangle x_{\alpha}$$

3. $||x||^2 = \sum_{\alpha \in I} |\langle x, x_\alpha \rangle|^2$ (Parseval's identity).

Lemma (Bessel's inequality): Let X be an inner product space and $\{x_1, \ldots, x_N\}$ an orthonormal system, then for each $x \in X$, $||x||^2 \ge \sum_{i=1}^N |\langle x, x_i \rangle|^2$.

Theorem: A Hilbert space is separable if and only if it has a *countable* orthonormal basis.

Lemma (Gram-Schmidt orthogonalization): Let y_1, \ldots be a linearly independent system. Then there exists an *orthonormal* system x_1, \ldots such that for each $k \ge 1$,

$$\operatorname{span}(y_1,\ldots,y_k) = \operatorname{span}(x_1,\ldots,x_k).$$

Isomorphism of inner product spaces.

Theorem: Let X be a separable Hilbert space. Then

- 1. if $\dim(X) = N < \infty$, then X is isomorphic to \mathbb{C}^N (or \mathbb{R}^N)
- 2. if $\dim(X) = \infty$, then X is isomorphic to ℓ_2 .

Orthogonal complement Y^{\perp} .

Theorem (projection theorem): Let X be a Hilbert space and Y a *closed* subspace. Then for each $x \in X$ there exist unique $y \in Y$ and $y' \in Y^{\perp}$ such that x = y + y'.

Lemma: Let X be a Hilbert space, Y a *closed* subspace and $x \in X$. Then there exists a unique $y_0 \in Y$ closest to x.

Direct sum of Hilbert spaces, $X \oplus Y$.

Theorem (Fourier series): The functions $\{\frac{1}{\sqrt{2\pi}}e^{inx}, n \in \mathbb{Z}\}$ form an orthonormal basis of $L^2[0, 2\pi]$ and for any $f \in L^2[0, 2\pi]$, $f(x) = \lim_{N \to \infty} \sum_{n=-N}^{N} c_n \frac{1}{\sqrt{2\pi}} e^{inx}$ in $L^2[0, 2\pi]$, where $c_n = \frac{1}{\sqrt{2\pi}} \int_0^{2\pi} f(x) e^{-inx} dx$.

• Continous linear functionals.

Proposition: Let X be a normed space. $f: X \to \mathbb{C}$ is a continuous linear functional if and only if f is continuous at 0.

Proposition: If $\dim(X) < \infty$ then any linear functional on X is continous.

Dual space X^* .

Bounded linear functional.

Proposition: Let X be a normed space. $f: X \to \mathbb{C}$ is a continuous linear functional if and only if f is bounded.

The norm of f, ||f||.

Proposition: $(X^*, \|\cdot\|)$ is a Banach space.

Examples of bounded linear functionals. Examples of X^* .

Proposition: $\ell_p^* = \ell_q, 1 \le p < \infty, \frac{1}{p} + \frac{1}{q} = 1.$

 $\ell_{\infty}^* \neq \ell_1.$

Theorem (Riesz lemma): Let X be a Hilbert space. For any $f \in X^*$ there exists a unique $y_f \in X$ such that $f(x) = \langle x, y_f \rangle$ for all $x \in X$ and $||f||_{X^*} = ||y_f||_X$.

Theorem (Hahn-Banach): Let X be a normed space, Y a subspace of X and $f_0 \in Y^*$. Then there exists $f \in X^*$ such that (1) $f(y) = f_0(y)$ for $y \in Y$ and (2) $||f||_{X^*} = ||f_0||_{Y^*}$.

Corollaries:

- 1. For any $x_0 \neq 0$, there exists $f \in X^*$ such that ||f|| = 1 and $f(x_0) = ||x_0||$. In particular, if f(x) = 0 for all $x \in X^*$, then x = 0.
- 2. Let *L* be a subspace of *X*, $x_0 \in X$ such that the distance from x_0 to *L* is d > 0. Then there exists $f \in X^*$ such that $f(x_0) = 1$, f(x) = 0 for all $x \in L$ and $||f|| = \frac{1}{d}$. In particular, if *L* is a vector subspace of *X*, then $\overline{L} = X$ if and only if the

only $f \in X^*$ such that f(x) = 0 for all $x \in L$ is the zero functional.

Theorem: Let X be a Banach space. If X^* is separable, then X is separable. Reflexive spaces. Examples.

• Continuous operator. Bounded operator.

Proposition: Let X, Y be normed spaces and $A: X \to Y$ a linear operator.

1. A is continuous if and only if A is continuous at $0 \in X$.

- 2. A is continuous if and only if A is bounded.
- 3. If $\dim(X) < \infty$ then A is continuous.

Operator norm.

Theorem: If Y is a Banach space, then $(\mathcal{L}(X,Y), \|\cdot\|)$ is also Banach.

Examples: integral operators, convolution operators, inclusion, projection.

Composition of operators. Series of operators. Operator exponent e^A .

Inverse operator.

Proposition: If $A: X \to Y$ is linear invertible, then A^{-1} is also linear.

Theorem: Let X, Y be normed spaces and $A \in \mathcal{L}(X, Y)$. If Im(A) = Y and there exists m > 0 such that for all $x \in X$, $||Ax||_Y \ge m||x||_X$, then A is invertible and $A^{-1} \in \mathcal{L}(Y, X)$.

Theorem (Neumann): Let X be Banach, $A \in \mathcal{L}(X)$. If $\sum_{n=0}^{\infty} A^n$ converges, then there exists $(I - A)^{-1} = \sum_{n=0}^{\infty} A^n \in \mathcal{L}(X)$. In particular, if ||A|| < 1, then there exists $(I - A)^{-1}$ and $||(I - A)^{-1}|| \leq \frac{1}{1 - ||A||}$.

Theorem (Banach): Let X, Y be Banach spaces, $A \in \mathcal{L}(X, Y)$. If A is bijective, then $A^{-1} \in \mathcal{L}(Y, X)$.

Corollary: Let $(X, \|\cdot\|_0)$ and $(X, \|\cdot\|_1)$ be *Banach* spaces such that for some $M < \infty$ and all $x \in X$, $\|x\|_1 \leq M \|x\|_0$. Then the two norms are equivalent.

Proposition: Let X be a Banach space. Then $G = \{A \in \mathcal{L}(X) : A^{-1} \in \mathcal{L}(X)\}$ is open in $\mathcal{L}(X)$.

• Spectrum.

Resolvent set $\rho(A)$. Spectrum $\sigma(A)$.

Proposition: Let X be a Banach space and $A \in \mathcal{L}(X)$. Then

- 1. $\rho(A)$ is open
- 2. $\rho(A) \supseteq \{\lambda \in \mathbb{C} : |\lambda| > ||A||\}.$

Proposition: Let X be a Banach space and $A \in \mathcal{L}(X)$. Then

- 1. $\sigma(A) \neq \emptyset$
- 2. $\sigma(A)$ is closed
- 3. $\sigma(A) \subseteq \{\lambda \in \mathbb{C} : |\lambda| \le ||A||\}$
- 4. if $\lambda \in \sigma(A)$ then $\lambda^n \in \sigma(A^n)$.

Point spectrum $\sigma_p(A)$, residual spectrum $\sigma_r(A)$, continuous spectrum $\sigma_c(A)$. Spectral radius $r_{\sigma}(A)$.

Theorem: Let X be a Banach space and $A \in \mathcal{L}(X)$. Then $r_{\sigma}(A) = \lim_{n \to \infty} ||A^n||^{\frac{1}{n}}$.

• Adjoint operators.

Theorem: Let X be a Hilbert space and $A \in \mathcal{L}(X)$. Then there exists a unique A^* and $||A^*|| = ||A||$.

Properties of A^* .

Proposition: $\lambda \in \sigma(A)$ if and only if $\overline{\lambda} \in \sigma(A^*)$.

Theorem: Let X be a Hilbert space and $A \in \mathcal{L}(X)$. Then

- 1. if $\lambda \in \sigma_r(A)$ then $\overline{\lambda} \in \sigma_p(A^*)$
- 2. if $\lambda \in \sigma_p(A)$ then $\overline{\lambda} \in \sigma_p(A^*) \cup \sigma_r(A^*)$
- 3. $\lambda \in \sigma_c(A)$ if and only if $\overline{\lambda} \in \sigma_c(A^*)$.

Spectrum of a shift operator in ℓ_2 .

Self-adjoint operator. Unitary operator.

Proposition: If $A^* = A$, then

- 1. $\langle Ax, x \rangle \in \mathbb{R}$ 2. $\sigma(A) \subset \mathbb{R}$ 3. $\sigma_r(A) = \emptyset$ 4. $||A|| = \sup_{||x||=1} |\langle Ax, x \rangle|$
- 5. $r_{\sigma}(A) = ||A||.$

Proposition: If A is unitary, then

1. ||A|| = 12. $\sigma(A) \subseteq \{\lambda \in \mathbb{C} : |\lambda| = 1\}.$

Theorem (Hellinger-Toeplitz): Let X be a Hilbert space and $A : X \to X$ linear operator such that $\langle Ax, y \rangle = \langle x, Ay \rangle$ for all $x, y \in X$. Then $A \in \mathcal{L}(X)$.

• Compact operator.

Proposition: Let X, Y be normed spaces, $A: X \to Y$ a linear operator.

- 1. If A is compact, then A is bounded.
- 2. If A is bounded and $rank(A) < \infty$, then A is compact.
- 3. If A, B are compact, then A + B is compact.
- 4. If A is compact and B bounded, then AB and BA are compact.
- 5. id : $X \to X$ is compact if and only if dim $(X) < \infty$.
- 6. If $\dim(X) = \infty$ and A is compact, then A does not have bounded inverse.
- 7. If A_n are compact and $A_n \to A$, then A is compact.

Theorem (Riesz-Schauder): Let X be a Hilbert space and A a compact operator. Then

1. $\sigma(A)$ is at most countable, its set of accumulation points is contained in $\{0\}$.

2. if $\lambda \in \sigma(A) \setminus \{0\}$, then $\lambda \in \sigma_p(A)$ and dim ker $(\lambda I - A) < \infty$.

Theorem (Hilbert-Schmidt): Let X be a separable Hilbert space, A a compact selfadjoint operator. Then there exists an orthonormal basis of X, e_1, e_2, \ldots and $\lambda_i \in \mathbb{R}$ such that $Ae_i = \lambda e_i$.

3 Differential geometry

• Surfaces in \mathbb{R}^3 . Local coordinates. Tangent plane.

First fundamental form. Second fundamental form.

Normal curvature in direction v.

Lemma: If A, B are symmetric bilinear forms on a vector space V and A is positive definite, then there exists a basis of V in which the matrix of A is the identity matrix and the matrix of B is diagonal.

Principal curvatures k_1, k_2 . Principal directions e_1, e_2 .

Remark: e_1, e_2 is an orthonormal basis of the tangent plane and k_i is a normal curvature in direction e_i .

Theorem (Euler): For any tangent vector v, $\frac{\Pi(v,v)}{\Pi(v,v)} = k_1 \cos^2 \varphi + k_2 \sin^2 \varphi$, where φ is an angle between v and e_1 .

Corollary: k_1, k_2 are *extremal* curvatures.

Gaussian curvature K. Mean curvature H.

Gauss equations. Christoffel symbols (of the second kind).

Einstein summation convention.

Theorem:

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{lk} \left(\frac{\partial g_{il}}{\partial u^{j}} + \frac{\partial g_{jl}}{\partial u^{i}} - \frac{\partial g_{ij}}{\partial u^{l}} \right).$$

That is, the Christoffel symbols are determined by the first fundamental form. Theorem (Gauss):

$$K = \frac{1}{g_{11}g_{22} - g_{12}^2} \left((\Gamma_{12}^k \Gamma_{12}^l - \Gamma_{11}^k \Gamma_{22}^l) g_{kl} + \frac{\partial^2 g_{12}}{\partial u^1 \partial u^2} - \frac{1}{2} \frac{\partial^2 g_{11}}{\partial u^2 \partial u^2} - \frac{1}{2} \frac{\partial^2 g_{22}}{\partial u^1 \partial u^1} \right)$$

That is, the Gaussian curvature is expressed only through the coefficients of the first fundamental form and their derivatives.

Covariant derivative of a vector field v along a vector field w, $\nabla_w v$.

Proposition:

1. $(v, w) \mapsto \nabla_w v$ is bilinear

2. for any smooth $f: U \to \mathbb{R}$,

$$\nabla_{fw}v = f\nabla_{w}v \qquad \nabla_{w}(fv) = D_{w}fv + f\nabla_{w}v,$$

where $D_w f = \frac{\partial f}{\partial u^j} w^j$ is the derivative of f in direction w

- 3. $\nabla_{r_j} r_i = \Gamma_{ij}^k r_k$
- 4. $\Gamma_{ij}^k = \Gamma_{ji}^k$
- 5. for any smooth vector fields a, b, w,

$$D_w\langle a,b\rangle = \langle \nabla_w a,b\rangle + \langle a,\nabla_w b\rangle.$$

Remarks:

- 1. Any bilinear function that satisfies 2. above is an affine connection.
- 2. Christoffel symbols determine $\nabla_w v$
- 3. 4. states that $\nabla_w v$ is symmetric
- 4. 5. states that $\nabla_w v$ is compatible with the metric.
- Topological spaces. Definition.

Base of topology. Neighborhood. Continuous function.

Hausdorff space. Second countable space.

Homeomorphism of topological spaces.

• Manifolds. Definition.

Local chart (U, φ) . Atlas $\{(U_{\alpha}, \varphi_{\alpha}), \alpha \in I\}$. Local coordinates $(x_{\alpha}^{1}, \ldots, x_{\alpha}^{n})$. Transition mappings.

Lie group.

Smooth structure on a manifold. Smooth manifold. Smooth mapping $f: M \to N$ (M, N smooth manifolds). Smooth function, smooth path.

Equivalence of atlases.

Theorem (level set theorem): Let $U \subseteq \mathbb{R}^n$ open, $f: U \to \mathbb{R}^m$ a smooth mapping, $y \in \mathbb{R}^m$. If for each $x \in M = f^{-1}(y)$, $\operatorname{rank}(\frac{\partial f^j}{\partial x^i}) = m$, then M is a manifold. Example: $SL(n, \mathbb{R})$.

• Tangent space.

Tangent vector (as an equivalence class of curves, in local coordinates and as a derivation). Tangent space T_pM .

The basis $\frac{\partial}{\partial x_{\alpha}^1}, \ldots, \frac{\partial}{\partial x_{\alpha}^n}$.

Tangent bundle TM.

Theorem: Let M be a smooth manifold. There exists a smooth structure on TM such that

- 1. the projection $\pi: TM \to M, \, \pi(p, v) = p$ is a smooth mapping
- 2. for each $p \in M$, there exists a neighborhood U and a diffeomorphism f: $\pi^{-1}(U) \to U \times \mathbb{R}^n$ such that $\pi(f^{-1}(p, v)) = p$.

Examples: $T\mathbb{R}$, TS^1 .

Covector. Tensor. Metric tensor. Riemannian manifold.

• Affine connection. Vector field. Covariant derivative. Christoffel symbols.

Torsion. Symmetric connection.

Affine connection for tensors.

Parallel transport of a tangent vector along a smooth curve.

Lemma: Let g be a (pseudo)metric on a smooth manifold M. The following claims are equivalent:

- 1. for any vector field $w, \nabla_w g_{ij} = 0$
- 2. for any smooth curve γ and v, w vector fields parallel along $\gamma, \frac{d}{dt} \langle v(t), w(t) \rangle = 0$
- 3. for any smooth curve γ and v, w vector fields on γ ,

$$\frac{d}{dt}\langle v(t), w(t) \rangle = \langle \nabla_{\dot{\gamma}} v(t), w(t) \rangle + \langle v(t), \nabla_{\dot{\gamma}} w(t) \rangle.$$

Connection compartible with metric. Levi-Civita connection.

Theorem (Levi-Civita): For any Riemannian manifold, there exists a unique symmetric connection compartible with the metric. Furthermore,

$$\Gamma_{ij}^{k} = \frac{1}{2} g^{kl} \left(\frac{\partial g_{il}}{\partial x^{j}} + \frac{\partial g_{jl}}{\partial x^{i}} - \frac{\partial g_{ij}}{\partial x^{l}} \right).$$

• *Curvature*. Non-commutativity of parallel transport. Curvature tensor (in local coordinates, using notation of affine connection).

Proposition:

- 1. R(u, v)w = -R(v, u)w
- 2. for symmetric connection,

$$R(u, v)w + R(v, w)u + R(w, u)v = 0$$

- 3. for connection compartible with metric, $\langle R(u,v)w, z \rangle = -\langle w, R(u,v)z \rangle$
- 4. for Levi-Civita connection, $\langle R(u,v)w, z \rangle = \langle R(w,z)u, v \rangle$.

Sectional curvature.

Ricci tensor.