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SYLLABUS

1 Measure theory

e Quter Lebesque measure on RY, p*. Properties:

A

M*(Q)) =0,

E C F implies p*(E) < p*(F),

(U2 Ey) <3072 n*(E),

if dist(E, F') > 0 then p*(EU F) = p*(E) 4+ p*(F)

for pairwise almost disjoint elementary sets B;, p*(U2,B;) = Yoo, m(B;).

Null set. Any countable set is a null set. Cantor set is an uncountable null set.

Proposition (outer regularity of p*): p*(E) = infosg open 1#5(O).

o Lebesgue measure. Lebesgue measurable set. Properties:

1.
2.
3.
4.

open/closed /null sets are Lebesgue measurable
a complement of a Lebesgue measurable set is Lebesgue measurable
a countable union of Lebesgue measurable sets is Lebesgue measurable

every Jordan measurable set is Lebesgue measurable.

Lebesgue measure p. Properties:

1.

(countable additivity) if FE; are pairwise disjoint Lebesgue measurable sets,
then p(UZ, Ey) = 3275, p(Er)

if By C Ey C ... are Lebesgue measurable, then u(U2, E;) = lim,, o u(E,)

if By D Ey D ... are Lebesgue measurable and u(E) < oo, then u(N2,E;) =
lim,, 0o p(Ey)

(translation invariance) if E is Lebesgue measurable then for any z € RY, z+FE
is Lebesgue measurable and u(z + E) = pu(E).

Example of a non-measurable set.

o Lebesque measurable function.

Lemma: f : R? — R is Lebesgue measurable if and only if the sets {z € R? :
f(z) < A} are Lebesgue measurable for all A € R.

Properties of Lebesgue measurable functions:

1.
2.
3.

any continuous function is Lebesgue measurable
if f,, are Lebesgue measurable then lim sup,, ., f.(x) is Lebesgue measurable

if f is Lebesgue measurable and g is continuous then g(f(z)) is Lebesgue
measurable



4. if f, g are Lebesgue measurable, then f + ¢, fg are Lebesgue measurable

Construction of Lebesgue integral on R? (simple/non-negative/real /complex mea-
surable functions).

e Almost everywhere. Properties:

1. if P(z) holds a.e. and P(x) implies Q(x) then Q(x) holds a.e.

2. if Pi(x) hold a.e. for each i, then P(x) = {all P;(z) hold simultaneously for i =
1,2, ...} holds a.e.

3. if f = g ae., then f is Lebesgue measurable if and only if ¢g is Lebesgue
measurable

4. Lebesgue integral does not depend on values of function on a set of measure 0

5.1f f: R? — [0,00) is Lebesgue measurable, then [,, f(z)dz = 0 if and only if
f(z) =0 ae.

6. if 0 < f(z) < g(x) a.e., then 0 < [, f(a)dz < [pa g(z)dx.

e o0-algebra. Measurable space.
Proposition: If B, a € I, are g-algebras on X, then N,c;B, is a o-algebra on X.
o-algebra generated by a family A of subsets of X, o(A)
Borel g-algebra, B(X). Borel measurable set.
Coarser and finer o-algebras.

Proposition: The o-algebra of Lebesgue measurable sets is generated by Borel mea-
surable sets and null sets.

Proposition: B(R) = o((—o0,al, a € R) = o((a,b], a,b € R) = o([a,b], a,b € R).
Product o-algebra.
Proposition: B(R™*") = B(R™) @ B(R").

e Measure. Definition of measure. Measure space. Examples.

Properties: if (X, B, 1) is a measure space and A; € B, then

Lop(URy Ai) <307, n(A)

2. if Ay C Ay, C ..., then p(UR A4;) = limy, 00 1(Ay)

3.if A1 D Ay O ... and p(A;) < oo, then pu(N2,A;) = lim, o p(Ay)
Carathéodory extension theorem: For any set X, an algebra A on X and a pre-

measure fig on A, there exists an extension of i to a measure on o(A). Furthermore,
if o is sigma-finite, then the extension is unique.

Lebesgue-Stiltjes measure. Examples.

Product measure.



e Measurable function. Definition.

Proposition: If f: (X,B) — (X', B’) and B’ = o(A’), then f is measurable if and
only if f~!(A’) € Bfor all A’ € A'.

Borel function.
Properties of measurable functions:
1. f is a Borel function on (X, B) if and only if {z € X : f(z) > A} € B for all
AeR
2. xg(x) is Borel if and only if £ € B
3. f: X — R is measurable if and only if f; and f_ are measurable
4. f,g: X — R are measurable, then f + g, fg are measurable.
e Lebesgue integral. Construction of Lebesgue integral on a (complete) measure space
(X, B, ).

Properties:

1. if f =g pa.e., then fX fdu = fX gdu

2. if f < g p-a.e., then fX fdu < fng,u

3. for f >0 p-ae., [, fdu=0if and only if f =0 p-a.e.
4. (linearity) [y (af +bg)du =a [y fdu+0b [, gdp.

Monotone convergence theorem: If 0 < f; < fy < ... are measurable functions on
(X, B, i), then

lim fnd,u:/(lim fn)dp.
X X n—oo

n—oo

Fatou’s lemma: If fi, fo,... : X — [0,00) are measurable functions on (X, B, i),
then

n—oo n—

/ liminf f,dp < liminf/ frndpe.
X * Jx

Dominated convergence theorem: If fi, fo,... is a sequence of measurable functions
on (X, B, 1) converging to f and such that for some measurable function F': X —
[0,00) (1) |fu| < F prae. and (2) [ Fdp < oo, then

lim fndu:/ fdp.

Fubini theorem: Let (X, Bx,ux) and (Y, By, py) be measure spaces and f : X X
Y — R a measurable function with respect to Bx @ By. If [ o |f(z,y)|dux @ py <
oo, then

[ e = [ ([ sedn)aus = [ ([ o) aor



e LP spaces. Space LP(X, p). Seminorm || - ||, on £P(X, u).
Normed space LP(X, p).
Proposition: LP(X, u) is a Banach space.

Theorem: Let X be a metric space, u a o-finite measure on (X, B(X)) such that
for every Borel set A and every ¢ > 0, there exist closed C' and open O such that
C CACOand u(O\ C) < e. Then continuous functions on X are dense in
LP(X, ), ie., for any ¢ > 0 and f € LP there exists a continuous g such that

If = gllo <

Functional analysis

e Review of metric, normed, inner product spaces

o Hilbert space. Orthogonality. Orthogonal system, orthonormal system, orthonormal
basis.
Theorem: Any Hilbert space has an orthonormal basis.

Theorem: Let X be a Hilbert space, {24 }acs an orthonormal basis. Then for z € X

1. only countably many « € [ satisfy (z,z,) # 0,

2. v =3 (T, 20) T4

3. 1z = X 0er (@, o) |* (Parseval’s identity).
Lemma (Bessel’s inequality): Let X be an inner product space and {z1,...,zy} an
orthonormal system, then for each = € X, ||z|*> > 32N | [(x, ;)|

Theorem: A Hilbert space is separable if and only if it has a countable orthonormal
basis.

Lemma (Gram-Schmidt orthogonalization): Let yi,... be a linearly independent
system. Then there exists an orthonormal system x1,... such that for each k > 1,

span(yy, . .., yx) = span(zy, ..., Tx).

Isomorphism of inner product spaces.

Theorem: Let X be a separable Hilbert space. Then

1. if dim(X) = N < oo, then X is isomorphic to CV (or RY)
2. if dim(X) = oo, then X is isomorphic to 5.

Orthogonal complement Y.

Theorem (projection theorem): Let X be a Hilbert space and Y a closed subspace.
Then for each x € X there exist unique y € Y and ¢/ € Y+ such that x =y + v/

Lemma: Let X be a Hilbert space, Y a closed subspace and x € X. Then there
exists a unique yo € Y closest to x.



Direct sum of Hilbert spaces, X @Y.
Theorem (Fourier series): The functions {\/%7 e n € Z} form an orthonormal
basis of L2[0,2n] and for any f € L2[0,27], f(z) = limy oo S0

L?0, 27, where ¢, = \/Lz? fOZW F(x)e mdz.

1 nT
NCnm € in
Continous linear functionals.

Proposition: Let X be a normed space. f: X — C is a continous linear functional
if and only if f is continous at 0.

Proposition: If dim(X) < oo then any linear functional on X is continous.
Dual space X*.
Bounded linear functional.

Proposition: Let X be a normed space. f: X — C is a continous linear functional
if and only if f is bounded.

The norm of f, || f]|

Proposition: (X*, || - ||) is a Banach space.

Examples of bounded linear functionals. Examples of X*.
Proposition: £ = {,, 1 < p < oo, % + % =1

s # l.

Theorem (Riesz lemma): Let X be a Hilbert space. For any f € X* there exists a
unique yy € X such that f(z) = (z,ys) for all x € X and || f||x- = ||lysl x-

Theorem (Hahn-Banach): Let X be a normed space, Y a subspace of X and f; €
Y*. Then there exists f € X* such that (1) f(y) = fo(y) for y € Y and (2)

1f1lx+ = [1fol

Corollaries:

Y*-

1. For any xg # 0, there exists f € X* such that || f|| =1 and f(zo) = ||@o]|-
In particular, if f(x) =0 for all x € X*, then x = 0.

2. Let L be a subspace of X, xg € X such that the distance from zq to L is d > 0.
Then there exists f € X* such that f(xy) = 1, f(x) = 0 for all x € L and

I£1l = 3.

In particular, if L is a vector subspace of X, then L = X if and only if the
only f € X* such that f(x) =0 for all x € L is the zero functional.

Theorem: Let X be a Banach space. If X* is separable, then X is separable.

Reflexive spaces. Examples.

Continuous operator. Bounded operator.

Proposition: Let X,Y be normed spaces and A : X — Y a linear operator.

1. A is continuous if and only if A is continuous at 0 € X.



2. A is continuous if and only if A is bounded.

3. If dim(X) < oo then A is continuous.

Operator norm.

Theorem: If Y is a Banach space, then (L(X,Y), || - ||) is also Banach.
Examples: integral operators, convolution operators, inclusion, projection.
Composition of operators. Series of operators. Operator exponent e.
Inverse operator.

Proposition: If A: X — Y is linear invertible, then A~! is also linear.

Theorem: Let X,Y be normed spaces and A € £(X,Y). If Im(A) =Y and there
exists m > 0 such that for all x € X, ||Az||y > m||z|x, then A is invertible and
Ate LY, X).

Theorem (Neumann): Let X be Banach, A € £(X). If Y 7° A" converges, then
there exists (I — A)~! =Y A" € L£(X). In particular, if [|A|| < 1, then there

exists (1 — A)~" and [|(1 — A)7'|| < k.

Theorem (Banach): Let XY be Banach spaces, A € L(X,Y). If A is bijective,
then A~' € L(Y, X).

Corollary: Let (X, ||-]o) and (X, ||-||1) be Banach spaces such that for some M < oo
and all z € X, ||z]|; < M||x||o. Then the two norms are equivalent.

Proposition: Let X be a Banach space. Then G = {A € L(X) : A~ € L(X)} is
open in £(X).

Spectrum.

Resolvent set p(A). Spectrum o(A).

Proposition: Let X be a Banach space and A € £(X). Then

1. p(A) is open
2. p(A) D {AeC : Al > Al
Proposition: Let X be a Banach space and A € £(X). Then
1. o(A) #0
2. 0(A) is closed
3. a(A) C{AeC: A <[lAl}
4. if X € 0(A) then A" € o(A").
Point spectrum o,(A), residual spectrum o,(A), continuous spectrum o.(A).

Spectral radius r,(A).
Theorem: Let X be a Banach space and A € £(X). Then r,(A) = lim,, HA”H%.



e Adjoint operators.

Theorem: Let X be a Hilbert space and A € £(X). Then there exists a unique A*
and [|A*[| = [|A].

Properties of A*.
Proposition: A € o(A) if and only if A € o(A*).
Theorem: Let X be a Hilbert space and A € £(X). Then

1. if A € 0,(A) then \ € 0,(A*)
2. if A € 0,(A) then X € 0,(A*) U o, (A%)
3. XA € o.(A) if and only if X € g.(A*).

Spectrum of a shift operator in /5.
Self-adjoint operator. Unitary operator.

Proposition: If A* = A, then

(Az,z) € R

o(A) CR

o (A) =10

Al = SUpP||z|=1 |(Az, )|
ro(A) = [IAl

A

Proposition: If A is unitary, then
L ||Al=1
2. 0(A) C{reC: |\=1}

Theorem (Hellinger-Toeplitz): Let X be a Hilbert space and A : X — X linear
operator such that (Az,y) = (x, Ay) for all x,y € X. Then A € L(X).

e Compact operator.

Proposition: Let X,Y be normed spaces, A : X — Y a linear operator.

If A is compact, then A is bounded.

If A is bounded and rank(A) < oo, then A is compact.

If A, B are compact, then A 4+ B is compact.

If A is compact and B bounded, then AB and BA are compact.
id : X — X is compact if and only if dim(X) < oc.

S U W=

If dim(X) = oo and A is compact, then A does not have bounded inverse.

7. If A, are compact and A, — A, then A is compact.

Theorem (Riesz-Schauder): Let X be a Hilbert space and A a compact operator.
Then



1. 0(A) is at most countable, its set of accumulation points is contained in {0}.
2. if A€ o(A)\ {0}, then A € 0,(A) and dimker(A] — A) < oco.
Theorem (Hilbert-Schmidt): Let X be a separable Hilbert space, A a compact self-

adjoint operator. Then there exists an orthonormal basis of X, ey, es,... and \; € R
such that Ae; = Ae;.

Differential geometry

Surfaces in R3. Local coordinates. Tangent plane.
First fundamental form. Second fundamental form.
Normal curvature in direction v.

Lemma: If A, B are symmetric bilinear forms on a vector space V and A is positive
definite, then there exists a basis of V' in which the matrix of A is the identity matrix
and the matrix of B is diagonal.

Principal curvatures kq, ko. Principal directions eq, es.

Remark: eq, ey is an orthonormal basis of the tangent plane and k; is a normal
curvature in direction e;.

1I(v,v)
’ I(v,w)

Theorem (Euler): For any tangent vector v = ky cos? p + kysin? ¢, where ¢

is an angle between v and e;.

Corollary: ki, ke are extremal curvatures.

Gaussian curvature K. Mean curvature H.

Gauss equations. Christoffel symbols (of the second kind).
FEinstein summation convention.

Theorem:

rk — lg”“ Igu | g5 _ 9gij

K oul  Out  Oul )’

That is, the Christoffel symbols are determined by the first fundamental form.
Theorem (Gauss):

1
K - —2
g11922 — 912

oultou?  20u20u? 2 0uldul

0? 1 02 1 02
<(Flf2rl12 - Flflréz)gkl + g1z Iu 922 ) .

That is, the Gaussian curvature is expressed only through the coefficients of the
first fundamental form and their derivatives.

Covariant derivative of a vector field v along a vector field w, V,v.

Proposition:

1. (v,w) — V,v is bilinear



2. for any smooth f: U — R,
Vit = Vv Vu(fv) = Dyfv+ fVy,v,

where D, f = %wi is the derivative of f in direction w
3. Vij- = FZ Tk
4. I’fj = Ffi

5. for any smooth vector fields a, b, w,
Dy {a,b) = (Vya,b) + (a, V,,b).

Remarks:

1. Any bilinear function that satisfies 2. above is an affine connection.
2. Christoffel symbols determine Vv
3. 4. states that Vv is symmetric

4. 5. states that Vv is compatible with the metric.

Topological spaces. Definition.
Base of topology. Neighborhood. Continuous function.
Hausdorff space. Second countable space.

Homeomorphism of topological spaces.

Manifolds. Definition.

Local chart (U, ). Atlas {(Uy, ¢a), @ € I}. Local coordinates (xl,...z"). Transi-
tion mappings.

Lie group.

Smooth structure on a manifold. Smooth manifold. Smooth mapping f: M — N
(M, N smooth manifolds). Smooth function, smooth path.

Equivalence of atlases.

Theorem (level set theorem): Let U C R™ open, f : U — R™ a smooth mapping,
y € R™. If for each z € M = f~1(y), rank(2}) = m, then M is a manifold.

ox?
Example: SL(n,R).

Tangent space.

Tangent vector (as an equivalence class of curves, in local coordinates and as a
derivation). Tangent space T, M.

The basis 22, ..., 2

=2 <
oxg’ ? 0z

Tangent bundle T'M.

Theorem: Let M be a smooth manifold. There exists a smooth structure on T'M
such that



1. the projection 7w : TM — M, m(p,v) = p is a smooth mapping
2. for each p € M, there exists a neighborhood U and a diffeomorphism f :
7Y U) — U x R™ such that 7(f~'(p,v)) = p.
Examples: TR, T'S!.

Covector. Tensor. Metric tensor. Riemannian manifold.

Affine connection. Vector field. Covariant derivative. Christoffel symbols.
Torsion. Symmetric connection.
Affine connection for tensors.
Parallel transport of a tangent vector along a smooth curve.
Lemma: Let g be a (pseudo)metric on a smooth manifold M. The following claims
are equivalent:
1. for any vector field w, V,,g;; =0
2. for any smooth curve 7y and v, w vector fields parallel along vy, < (v(t), w(t)) = 0

3. for any smooth curve v and v, w vector fields on 7,

d
2 (@), w(t) = (V4 u(t), w(t)) + (v(t), V4 w(t)).
Connection compartible with metric. Levi-Civita connection.

Theorem (Levi-Civita): For any Riemannian manifold, there exists a unique sym-
metric connection compartible with the metric. Furthermore,

Ik — L <89il 4 9g;i _ agij)
i :

T2 g oxi  Oxt  Oxt

Curvature. Non-commutativity of parallel transport. Curvature tensor (in local
coordinates, using notation of affine connection).

Proposition:
1. R(u,v)w =—R(v,u)w
2. for symmetric connection,
R(u,v)w + R(v,w)u + R(w,u)v =0
3. for connection compartible with metric, (R(u,v)w, z) = —(w, R(u,v)z)
4. for Levi-Civita connection, (R(u,v)w, z) = (R(w, z)u, v).

Sectional curvature.

Ricci tensor.
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