RETAKE SOLUTIONS, 9 October, 17:00 – 19:00

1. Consider the function f on the interval [0, 1] defined by

$$f(x) = \begin{cases} 1 & x \in [0,1] \cap \mathbb{Q} \\ \sin x & x \in [0,1] \setminus \mathbb{Q}. \end{cases}$$

Prove that f is Lebesgue measurable and compute the Lebesgue integral $\int_0^1 f(x) dx$. Answer: $1 - \cos 1$.

Solution. Consider the function $g(x) = \sin x$. g is continuous, thus Lebesgue measurable. Since the set of rational numbers \mathbb{Q} has zero Lebesgue measure, f = g almost everywhere. In particular, f is also Lebesgue measurable and $\int_0^1 f(x) dx = \int_0^1 g(x) dx = \int_0^1 \sin x dx = 1 - \cos 1$.

2. Consider the σ -algebra \mathcal{A} generated by all singletons on the real line, i.e., $\mathcal{A} = \sigma(\{x\}, x \in \mathbb{R})$. Which of the following statements (a)-(c) is true? Justify your answer.

(a)
$$\mathcal{A} \subsetneq \mathcal{B}(\mathbb{R})$$
 (b) $\mathcal{B}(\mathbb{R}) \subsetneq \mathcal{A}$ (c) $\mathcal{A} = \mathcal{B}(\mathbb{R})$

Answer: (a).

Solution. First note that for any $x \in \mathbb{R}$, $\{x\} \in \mathcal{B}(\mathbb{R})$. Indeed, $\{x\}$ is the countable intersection of open sets $(x - \frac{1}{n}, x + \frac{1}{n})$. Thus, $\mathcal{A} \subseteq \mathcal{B}(\mathbb{R})$. In particular, (b) is wrong. We will show that $\mathcal{A} \neq \mathcal{B}(\mathbb{R})$, which implies that (c) is also wrong. Since \mathcal{A} contains any real number, it also contains any countable union of real numbers. Let $\mathcal{A}' =$ $\{B \subseteq \mathbb{R} : B \text{ or } B^c \text{ is a countable union of real numbers}\}$. Note that \mathcal{A}' is a σ algebra. Indeed, (a) it contains \emptyset , (b) if $A \in \mathcal{A}'$ then $A^c \in \mathcal{A}'$ by definition of \mathcal{A}' , (c) if $A_i \in \mathcal{A}'$, then $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}'$. Thus, $\mathcal{A} \subseteq \mathcal{A}'$. (In fact, $\mathcal{A} = \mathcal{A}'$.) Now, any open interval, for instance (0, 1), is not in \mathcal{A}' , thus $\mathcal{A} \neq \mathcal{B}(\mathbb{R})$.

We conclude that $\mathcal{A} \subsetneq \mathcal{B}(\mathbb{R})$, i.e., (a) is correct.

- 3. (5 points) Let f be a linear functional on the space of continuous functions C[0,2] with supremum norm, defined by $f(x) = \int_0^1 x(t)dt \int_1^2 x(t)dt$. Find the norm of f. Answer: 2.

Solution. For any $x \in C[0, 2]$,

$$|f(x)| = \left| \int_0^1 x(t)dt - \int_1^2 x(t)dt \right| \le \int_0^2 |x(t)|dt \le 2 \sup_{t \in [0,2]} |x(t)| = 2||x||.$$

Thus, $||f|| \leq 2$.

Consider continuous functions x_n defined by

$$x_n(t) = \begin{cases} 1 & 0 \le t \le 1 - \frac{1}{n} \\ n(1-t) & 1 - \frac{1}{n} \le t \le 1 + \frac{1}{n} \\ -1 & 1 + \frac{1}{n} \le t \le 2. \end{cases}$$

Note that $||x_n|| = 1$ and $f(x_n) = 2 - \frac{1}{n}$. Thus, for all n, $||f|| \ge 2 - \frac{1}{n}$, and we conclude that ||f|| = 2.

4. (5 points) Let f be a real-valued bounded measurable function on [0, 1] and A a linear operator on $L^2[0, 1]$ defined by Ax(t) = f(t)x(t). Find the point spectrum $\sigma_p(A)$.

Answer: All $\lambda \in \mathbb{R}$ such that $\mu\{t : f(t) = \lambda\} > 0$.

Solution. Point spectrum of A consists of those $\lambda \in \mathbb{C}$ for which there exists $x \in L^2[0,1]$ such that $x \neq 0$ almost everywhere and $Ax = \lambda x$ almost everywhere. By the definition of A, the last equality states that $(f(t) - \lambda)x(t) = 0$ for almost every t. We distinguish two cases:

(a) If $f(t) \neq \lambda$ almost everywhere, i.e., $\mu\{t : f(t) = \lambda\} = 0$, then x(t) = 0 almost everywhere, in which case $\lambda \notin \sigma_p(A)$.

(b) If $\mu\{t : f(t) = \lambda\} > 0$, let x(t) be the characteristic function of the set $\{t : f(t) = \lambda\}$. Then, x is measurable, $x \neq 0$ almost everywhere, and $(f(t) - \lambda)x(t) = 0$ almost everywhere. Thus, $\lambda \in \sigma_p(A)$. (Since f is real-valued, any such λ is real.) \Box

5. (5 points) Let A be a self-adjoint operator on a Hilbert space X. Prove that $\ker(A^2) = \ker(A)$. (Here ker is the kernel of operator.)

Solution. Let $x \in \text{ker}(A)$, then Ax = 0. By linearity of A, $A^2x = A(Ax) = A(0) = 0$. Thus, $x \in \text{ker}(A^2)$. (Note, here we only use that A is linear.)

Let $x \in \ker(A^2)$, then $A^2x = 0$ and $\langle A^2x, x \rangle = 0$. Since A is self-adjoint, $0 = \langle A^2x, x \rangle = \langle Ax, Ax \rangle = ||Ax||^2$. Thus, Ax = 0 and $x \in \ker(A)$.

6. Compute the first and the second fundamental forms of the surface r(u, v) in \mathbb{R}^3 defined by $r(u, v) = (u, v, uv), (u, v) \in \mathbb{R}^2$.

Answer:
$$E = 1 + v^2$$
, $F = uv$, $G = 1 + u^2$, $L = 0$, $M = \frac{1}{\sqrt{1 + u^2 + v^2}}$, $N = 0$.

Solution. First compute $r_u = (1, 0, v)$, $r_v = (0, 1, u)$. The coefficients of the first fundamental form are $E = r_u \cdot r_u = 1 + v^2$, $F = r_u \cdot r_v = uv$, $G = r_v \cdot r_v = 1 + u^2$. To compute the second fundamental form, we need $r_{uu} = (0, 0, 0)$, $r_{uv} = (0, 0, 1)$, $r_{vv} = (0, 0, 0)$, $r_u \times r_v = (-v, -u, 1)$, $n = \frac{r_u \times r_v}{\|r_u \times r_v\|} = (\frac{-v}{\sqrt{1+u^2+v^2}}, \frac{-u}{\sqrt{1+u^2+v^2}}, \frac{1}{\sqrt{1+u^2+v^2}})$. The coefficients of the second fundamental form are $L = r_{uu} \cdot n = 0$, $M = r_{uv} \cdot n = \frac{1}{\sqrt{1+u^2+v^2}}$, $N = r_{vv} \cdot n = 0$.

[Gaussian curvature of the surface is $K = \frac{LN - M^2}{EG - F^2} = \frac{-1}{\sqrt{1 + u^2 + v^2}}$ (< 0 everywhere).]