EXAM SOLUTIONS, 18 July, 10:00 - 12:00

1. Let A be a *not* Lebesgue measurable set in \mathbb{R} . Define the function

$$f(x) = \begin{cases} x^2 & x \in A \\ 0 & x \notin A. \end{cases}$$

Prove that f is not measurable.

Solution. Assume that f is measurable. Then the set $B = \{x : f(x) > 0\}$ is measurable. Note that f(x) > 0 if and only if $x \in A$ and $x \neq 0$, that is $B = A \setminus \{0\}$. Consider two cases. If $0 \notin A$, then A = B is measurable, a contradiction with non-measurability of A. If $0 \in A$, then $A = B \cup \{0\}$ is measurable as a union of two measurable sets $(B \text{ and } \{0\})$, again a contradiction. Thus, f is non-measurable. \Box

2. Find the σ -algebra on \mathbb{R} generated by the two sets $\{\{1,2\},\{2,3\}\}$.

Answer: All subsets of $\{1, 2, 3\}$ and their complements in \mathbb{R} .

Solution. Let $A = \{1, 2\}$, $B = \{2, 3\}$, and denote the σ -algebra generated by A and B by \mathcal{A} . From the axioms of σ -algebra it follows that $A \setminus B = \{1\}$, $B \setminus A = \{3\}$ and $A \cap B = \{2\}$ are in \mathcal{A} . Therefore, any subset of $\{1, 2, 3\}$ (all possible unions of these three singleton sets) is in \mathcal{A} . Since \mathcal{A} is closed under complements, it contains complements of all subsets of $\{1, 2, 3\}$.

Denote the set of all subsets of $\{1, 2, 3\}$ by \mathcal{A}_1 and the set $\{\mathbb{R} \setminus C : C \in \mathcal{A}_1\}$ of their complements by \mathcal{A}_2 . Then $\mathcal{A}_1 \cup \mathcal{A}_2$ is a σ -algebra. (Indeed, the union of any elements from \mathcal{A}_i is in \mathcal{A}_i , and the union of $C_1 \in \mathcal{A}_1$ and $C_2 \in \mathcal{A}_2$ is in \mathcal{A}_2 , the complement of any $C \in \mathcal{A}_i$ is in \mathcal{A}_{3-i} .) Furthermore, by the above considerations, it is the smallest σ -algebra that contains A and B. \Box

3. Find the norm of the linear operator A on the space C[0, 1] (with supremum norm), defined by

$$Ax(t) = x(0) - x(t).$$

Answer: 2.

Solution. Let $x \in C[0,1]$. Denote the norm in C[0,1] by $\|\cdot\|$, that is $\|x\| = \sup_{t \in [0,1]} |x(t)|$.

First note that A is indeed a linear operator on C[0,1]: If x(t) is a continuous function on [0,1], then x(0) - x(t) is also continuous on [0,1], and for all $t \in [0,1]$, A(ax + by)(t) = (ax + by)(0) - (ax + by)(t) = ax(0) + by(0) - ax(t) - by(t) = aAx(t) + bAy(t) = (aAx + bAy)(t).

To find the norm of A, we estimate

$$||Ax|| = \sup_{t \in [0,1]} |x(0) - x(t)| \le |x(0)| + \sup_{t \in [0,1]} |x(t)| \le 2||x||.$$

Thus, A is a bounded operator and $||A|| \leq 2$.

Finally, consider the continuous function x(t) = 1 - 2t. Note that ||x|| = 1 and $||Ax|| = \sup_{t \in [0,1]} |1 - (1 - 2t)| = 2 = 2||x||$. Thus, ||A|| = 2.

4. Let f be a real-valued bounded measurable function on [0, 1] and A a linear operator on $L^2[0, 1]$ defined by

$$Ax(t) = f(t) x(t).$$

Find $\sigma_r(A)$. Answer: \emptyset .

Solution. Note that $L^2[0,1]$ is a Hilbert space with inner product $\langle x,y\rangle = \int_{[0,1]} x(t)\overline{y(t)} dt$. Furthermore, for any $x,y \in L^2[0,1]$, $\langle Ax,y\rangle = \langle x,Ay\rangle$. That is, A is self-adjoint. It follows that $\sigma_r(A) = \emptyset$.

5. Let X be a Banach space and $A \in \mathcal{L}(X)$. Can the resolvent of A be compact? Justify your answer.

Answer: Yes if and only if $\dim(X) < \infty$.

Solution. Let $\lambda \in \rho(A)$ and consider $R_{\lambda}(A) = (\lambda I - A)^{-1}$, the resolvent of A. By definition, $R_{\lambda}(A)$ is a bounded operator. In particular, if dim $(X) < \infty$, then $R_{\lambda}(A)$ is compact. On the other hand, if dim $(X) = \infty$, then $R_{\lambda}(A)$ cannot be compact, since its inverse $R_{\lambda}(A)^{-1} = \lambda I - A$ is a bounded operator, and we know that the inverse of any compact operator in an infinite dimensional space is not bounded. \Box

6. Let π_1 and π_2 be two lines in \mathbb{R}^2 . Find all pairs of lines (π_1, π_2) such that $\pi_1 \cup \pi_2$ is a manifold. Justify your answer.

Answer: The union of two lines in \mathbb{R}^2 is a manifold if and only if they are parallel or coincide.

Solution. If the lines coincide $\pi_1 = \pi_2 = \pi$, then their union is a 1-dimensional manifold. Indeed, for any $p \in \pi$, take its neighborhood $U = \pi$, then U is homeomorphic to \mathbb{R} , e.g., map p to 0 and p_1, p_2 at distance x from p to -x and x on \mathbb{R} .

If the lines are parallel, then their union is also a 1-dimensional manifold. Indeed, for any $p \in \pi_i$, take its neighborhood $U = \pi_i$. As before, it is homeomorphic to \mathbb{R} .

If the lines intersect, then their union is not a manifold. Indeed, let p be the unique point of intersection. Any point on $M = \pi_1 \cup \pi_2$ different from p is at positive distance from p, thus has an open neighborhood homeomorphic to an open interval of \mathbb{R} . Thus, if M is a manifold, then its dimension is 1. However, any open neighborhood of p is not homeomorphic to an open set in \mathbb{R} . Indeed, any such neighborhood U contains two open intervals $U_1 \subseteq \pi_1$ and $U_2 \subseteq \pi_2$ that contain p. If there exists a homeomorphism $f: U \to f(U) \subseteq \mathbb{R}$, then $f(U_1)$ and $f(U_2)$ are open intervals in \mathbb{R} that contain f(p). Thus, they must intersect, which contradicts injectivity of f. We have shown that p does not have a neighborhood homeomorphic to an open subset of \mathbb{R} , thus M is not a manifold.