Homework 9 (submit by 08.06.2017)

1. Let X be a Banach space and $A \in \mathcal{L}(X)$ such that for some $p \in \mathbb{N}$, $||A^p|| < 1$. Prove that the operator I - A has bounded inverse.

[Hint: Consider operators $B_i = \sum_{n=0}^{\infty} A^{pk+i}$.]

2. Let X be a Banach space and $A \in \mathcal{L}(X)$. Prove that A has a bounded inverse if and only if A^2 has a bounded inverse.

[Hint: Use Banach's theorem.]

3. Let C[0,1] be the Banach space of continuous functions with the supremum norm. Let $a \in C[0,1]$ and consider the operator $A: C[0,1] \to C[0,1]$ defined by

$$Ax(t) = a(t)x(t).$$

Prove that A has a bounded inverse if and only if $a(t) \neq 0$ for all $t \in [0, 1]$.

- 4. Let $A \in \mathcal{L}(X)$ and $\lambda \in \mathbb{C}$. Assume that there exists a sequence $x_n \in X$ such that $||x_n|| = 1$ and $(\lambda I A)x_n \to 0$ as $n \to \infty$. Prove that $\lambda \in \sigma(A)$. Give an example that the inverse statement is not true.
- 5. Let $A \in \mathcal{L}(\ell_2)$ be defined by $Ax = (x_2, x_1, x_3, x_4, \ldots)$ (permutation of the first two components). Find and classify the spectrum of A.
- 6. Prove Hilbert's identity

$$R_{\lambda}(A) - R_{\mu}(A) = (\mu - \lambda)R_{\lambda}(A)R_{\mu}(A).$$