Homework 7-8 (submit by 01.06.2017)

- 1. Find the norms of the following linear functionals.
 - (a) $f \in \ell_2^*, f(x) = x_1 + x_2$
 - (b) $f \in \ell_{\infty}^*, f(x) = x_1 + x_2$
 - (c) $f \in (C[-1,1])^*, f(x) = x(0) \int_0^1 x(t) dt$

(C[-1,1] is the space of continuous functions on [-1,1] with the supremum norm $||x|| = \sup_{t \in [-1,1]} |x(t)|)$

(d) $f \in (C^1[-1,1])^*, f(x) = x'(0)$

 $(C^{1}[-1,1])$ is the space of continuously differentiable functions on [-1,1] with the norm $||x|| = \sup_{t \in [-1,1]} |x(t)| + \sup_{t \in [-1,1]} |x'(t)|$

2. Let X be a normed space. Prove that for any $x \in X$,

$$||x|| = \sup_{f \in X^*, ||f||=1} |f(x)|.$$

- 3. Let X be the vector space of real-valued bounded functions on [0, 1] with the supremum norm $||x|| = \sup_{t \in [0,1]} |x(t)|$. Prove that there exists $f \in X^*$ such that $f \not\equiv 0$ and f(x) = 0 for all $x \in C[0, 1]$.
- 4. Let X be a Hilbert space and $A: X \to X$ a bounded linear operator. Prove that

$$||A|| = \sup_{||x|| \le 1, ||y|| \le 1} |\langle Ax, y \rangle|.$$

- 5. Let $A : \ell_2 \to \ell_1$ be the linear operator defined by $Ax = (x_1, \frac{x_2}{2}, \dots, \frac{x_n}{n}, \dots)$. Find the norm of A.
- 6. Let X be the subspace of C[0, 1] consisting of all infinitely differentiable functions. (Here for $x \in X$, $||x|| = \sup_{t \in [0,1]} |x(t)|$.) Let $A : X \to X$ be the linear functional defined by (Ax)(t) = x'(t). Is A bounded? If yes, find its norm.