Homework 4 (submit by 04.05.2017)

1. Let (X, \mathcal{B}, μ) be a measure space and $f : X \to [1, \infty)$ a measurable function. Prove that

$$\int_X f(x) \, d\mu < \infty \qquad \text{if and only if} \qquad \sum_{n=1}^\infty \mu(x \, : \, f(x) \ge n) < \infty.$$

2. Let (X, \mathcal{B}, μ) be a measure space and $f : X \to [0, \infty)$ a measurable function with $\int_X f(x) d\mu < \infty$. Prove that for any $\varepsilon > 0$ there exists $\delta > 0$ such that

$$\int_{E} f(x) d\mu < \varepsilon \quad \text{for all } E \in \mathcal{B} \text{ with } \mu(E) < \delta.$$

3. Let (X, \mathcal{B}, μ) be a measure space and $f: X \to \mathbb{R}$ an integrable function. Prove that

$$\left|\int_X f(x) \, d\mu\right| \le \int_X |f(x)| \, d\mu.$$

4. Let (X, \mathcal{B}) and (X', \mathcal{B}') be measurable spaces, μ a measure on (X, \mathcal{B}) , and $\varphi : X \to X'$ a measurable map (i.e., for all $B' \in \mathcal{B}', \varphi^{-1}(B') \in \mathcal{B}$). Define the *pushforward* measure $\varphi \circ \mu$ on (X', \mathcal{B}') by

$$(\varphi \circ \mu)(B') = \mu(\varphi^{-1}(B')), \quad B' \in \mathcal{B}'.$$

Prove that for any measurable function $f: X' \to [0, \infty)$,

$$\int_X f(\varphi(x)) \, d\mu = \int_{X'} f(x') \, d(\varphi \circ \mu).$$

5. Let $E = [-1, 1] \times [-1, 1]$ and the function $f : E \to \mathbb{R}$ is defined by

$$f(x,y) = \begin{cases} \frac{xy}{(x^2+y^2)^2} & (x,y) \neq (0,0) \\ 0 & x = y = 0. \end{cases}$$

(a) Prove that

$$\int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) dx \right) \, dy = \int_{-1}^{1} \left(\int_{-1}^{1} f(x,y) dy \right) \, dx = 0.$$

(b) Prove that f is not Lebesgue integrable on E.