Homework 3 (submit by 27.04.2017)

1. For $E \subseteq \mathbb{R}^2$ and $x \in \mathbb{R}$, define

$$E_x = \{ y \in \mathbb{R} : (x, y) \in E \}.$$

Prove that if $E \in \mathcal{B}(\mathbb{R}^2)$, then $E_x \in \mathcal{B}(\mathbb{R})$.

[Hint: Fix $x \in \mathbb{R}$ and consider $\mathcal{E} = \{E \subseteq \mathbb{R}^2 : E_x \in \mathcal{B}(\mathbb{R})\}$. Prove that (a) \mathcal{E} is a σ -algebra and (b) \mathcal{E} contains all boxes $[a, b] \times [c, d] \subset \mathbb{R}^2$.]

- Find a Lebesgue measurable set in ℝ² that is not Borel measurable.
 [Hint: Use previous exercise.]
- 3. Let f be a Borel function on $(\mathbb{R}^2, \mathcal{B}(\mathbb{R}^2))$. Fix $x \in \mathbb{R}$ and consider the function g(y) = f(x, y). Prove that g is a Borel function on $(\mathbb{R}, \mathcal{B}(\mathbb{R}))$.
- 4. Let $\pi : \mathbb{R}^2 \to \mathbb{R}$ be the projection on the first coordinate, i.e., $\pi(x, y) = x$ for all $x, y \in \mathbb{R}$. Prove that π is a Borel function.
- 5. Let (X, \mathcal{B}) be a measurable space and $f, g : X \to \mathbb{R}$ measurable functions. Prove that $\{x \in X : f(x) \ge g(x)\} \in \mathcal{B}$.