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SYLLABUS

1 Summary

• Integration in Rn:

(A) Multiple integral

Jordan measurable sets. Fubini theorem. Change of variables.

(B) Line integral

Line integral of scalar and vector fields. Green’s theorem. Conservative vector field.

(C) Surface integral

Surface integral of scalar and vector fields. Gauss’s theorem. Stokes’ theorem. Conservative

and solenoidal vector fields.

• Complex analysis:

(A) Complex derivative

Cauchy-Riemann conditions. Holomorphic function.

(B) Complex integration

Cauchy theorem. Cauchy integral formula. Cauchy integral formula for derivatives. Taylor’s

series.

(C) Isolated singularities

Removable singularity. Pole. Essential isolated singularity. Laurent series.

(D) Residues

Residue theorem. Evaluation of definite integrals using residues.

• Partial differential equations:

(A) First order PDEs. Method of characteristics.

(B) Classification of second order PDEs. Canonical form.

(C) Wave equation

Initial-boundary value problem. D’Alembert’s formula. Fourier method.

(D) Heat equation

Initial-boundary value problem. Fourier method.

(E) Laplace and Poisson equations.

2 Multiple integral

• Jordan measure. Inner and outer Jordan measures, their basic properties. Jordan
measurable set. Jordan measure. Set of measure zero. Examples of sets of measure
zero: graph of continuous function, rectifiable curve.



Theorem: A bounded set is Jordan measurable iff its boundary has measure zero.

Properties of measurable sets.

• Multiple integral. Partition. Riemann sum. Multiple integral.

Theorem: If a function f is Riemann integrable on a closed measurable set S, then
it is bounded on S.

Lower and upper Darboux sums. Fluctuation ω(f ;S) = supx,y∈S |f(x)− f(y)|.
Theorem: A function f is Riemann integrable on a measurable set S iff f is bounded
on S and limδτ→0

∑`τ
i=1 ω(f ;Si)µ(Si) = 0.

Theorem: If f is continuous on a closed measurable S, then f is integrable on S.

Theorem: If f is integrable on S, E ⊂ S with µ(E) = 0, and g is a bounded
function on S such that g(x) = f(x) for all x /∈ E, then g is integrable on S and´
S
g(x)dx =

´
S
f(x)dx. Thus, the value of the integral

´
S
f(x)dx does not depend

on values of f on sets of measure 0.

Corollary: If f is bounded on E and µ(E) = 0, then
´
E
f(x)dx = 0.

• Properties of multiple integral.

For any measurable S,
´
S

1dx = µ(S).

If S ′ ⊂ S are measurable and f is integrable on S, then f is integrable on S ′ and´
S
f(x)dx =

´
S′
f(x)dx+

´
S\S′ f(x)dx.

If f and g are integrable on S, then αf + βg is also integrable on S and
´
S
(αf +

βg)(x)dx = α
´
S
f(x)dx+ β

´
S
g(x)dx.

If f and g are integrable on S, then fg is integrable on S.

If f ≤ g on S, then
´
S
f(x)dx ≤

´
S
g(x)dx.

If f is integrable on S, then |f | is integrable on S and |
´
S
f(x)dx| ≤

´
S
|f(x)|dx.

If S ′ ⊆ S measurable, f(x) ≥ 0 on S, then
´
S
f(x)dx ≥

´
S′
f(x)dx.

• Iterated integral. Elementary sets in R2. The main tool to compute multiple inte-
grals is the Fubini theorem:

Theorem (Fubini): If S = {(x, y) | a ≤ x ≤ b, ϕ(x) ≤ y ≤ ψ(x)} and f is continuous
on S, then ¨

S

f(x, y)dxdy =

ˆ b

a

[ˆ ψ(x)

ϕ(x)

f(x, y)dy

]
dx.

Similarly, if S = {(x, y) | c ≤ y ≤ d, α(y) ≤ x ≤ β(y)} and f is continuous on S,
then ¨

S

f(x, y)dxdy =

ˆ d

c

[ˆ β(y)

α(y)

f(x, y)dx

]
dy.
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In particular, if S is elementary with respect to both 0x- and 0y-axes, then the order
of integration in the iterated integral can be changed:

ˆ b

a

[ˆ ψ(x)

ϕ(x)

f(x, y)dy

]
dx =

ˆ d

c

[ˆ β(y)

α(y)

f(x, y)dx

]
dy.

Remark: If S is not elementary, but can be written as the union of elementary
sets Si, then the multiple integral over S can be computed by applying the Fubini
theorem to each Si.

Elementary sets in R3.

Theorem (Fubini): If S = {(x, y, z) | (x, y) ∈ S ′, ϕ2(x, y) ≤ z ≤ ψ2(x, y)} and f is
continuous in S, then

˚
S

f(x, y, z)dxdydz =

¨
S′

[ˆ ψ2(x,y)

ϕ2(x,y)

f(x, y, z)dz

]
dxdy.

For z0 ∈ R, let S(z0) = {(x, y, z) | (x, y, z) ∈ S, z = z0}. Then

˚
S

f(x, y, z)dxdydz =

ˆ b

a

[¨
S(z)

f(x, y, z)dxdy

]
dz.

Remark: If S ′ and S(z) above are elementary, then the multiple integrals over S ′

and S(z) can be computed using the Fubini theorem (with two variables).

Fubini theorem in Rn.

• Change of variables. Change of variables in R2:

Theorem: Let S, S ′ ⊂ R2 be measurable. Let ϕ : S ′ → S be a bijective and
continuously differentiable map on S ′ with non-zero Jacobian on S ′. (For every

(u, v) ∈ S ′, ϕ(u, v) = (x(u, v), y(u, v)) ∈ S,
∣∣∣∂(x,y)
∂(u,v)

∣∣∣ 6= 0 in S ′.) Then

¨
S

f(x, y)dxdy =

¨
S′
f(ϕ(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ dudv.
Geometric interpretation of the Jacobian.

Change of variables in Rn. Examples: cylindrical coordinates, spherical coordinates.

• Improper integral. Exhaustion of an open S. Improper integral
´
S
f(x)dx (cases of

unbounded S or unbounded f). Example:
´ +∞
−∞ e−x

2
dx =

√
π.

Comparison criterion: Let S be open. 0 ≤ f(x) ≤ g(x) on S. If
´
S
g(x)dx converges,

then
´
S
f(x)dx converges. Examples:´

·· ·
´

x21+...+x2n≤1

dx1...dxn(√
x21+...+x2n

)α <∞ iff α < n,
´
·· ·
´

x21+...+x2n≥1

dx1...dxn(√
x21+...+x2n

)α <∞ iff α > n.
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3 Line integrals

• Line integral of scalar field. Rectifiable curve parametrized by its length.

ˆ
γ

fds =

ˆ L

0

f(x(s), y(s), z(s))ds.

Properties:´
γ
ds = L = length of γ

If f is continuous, then
´
γ
fds exists.

If γR is the reversal of γ, then
´
γR
fds =

´
γ
fds.´

γ
fds as limit of Riemann sums.

If γ is parametrized by (x(t), y(t), z(t)), a ≤ t ≤ b, then

ˆ
γ

fds =

ˆ b

a

f(x(t), y(t), z(t))
√
x′(t)2 + y′(t)2 + z′(t)2 dt.

• Line integral of vector field. Work of a force.

If F = (P,Q,R), γ = {r(t) = (x(t), y(t), z(t)), a ≤ t ≤ b}, then

ˆ
γ

Pdx+Qdy+Rdz =

ˆ b

a

(F · r′(t)) dt =

ˆ b

a

(P (r(t))x′(t) +Q(r(t))y′(t) +R(r(t))z′(t)) dt.

Remark: the definition is independent of the parametrization of γ.

If γR is the reversal of γ, then
´
γR
Pdx+Qdy +Rdz = −

´
γ
Pdx+Qdy +Rdz.

• Green’s formula. Positively and negatively oriented contours in R2.

Theorem: Let S be a measurable set in R2 and its boundary is the union of finitely
many continously differentiable curves. Let γ+ be the positively oriented boundary
of S. Let P (x, y), Q(x, y) be continuous on S such that ∂P

∂y
and ∂Q

∂x
are continuous

on S. Then ¨
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

ˆ
γ+
Pdx+Qdy.

Corollary: If S contains holes with boundaries γ1, . . . , γk, then

¨
S

(
∂Q

∂x
− ∂P

∂y

)
dxdy =

ˆ
γ+
Pdx+Qdy +

k∑
i=1

ˆ
γ−i

Pdx+Qdy.

Area of a region surrounded by a curve: µ(S) = 1
2

´
γ+
xdy − ydx.

Sign of Jacobian: J > 0 if orientation is preserved, J < 0 if orientation is reverted.
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• Conservative vector field in R2. Scalar potential.

Theorem: Let (P,Q) be continuous vector field on S ⊂ R2. The following are
equivalent:

(a) For any contour γ in S,
´
γ
Pdx+Qdy = 0,

(b) For any A,B ∈ S, the integral
´
γ
Pdx + Qdy does not depend on the choice of

γ in S from A to B.

(c) There exists ϕ such that (P,Q) = ∇ϕ. In this case
´
γ
Pdx+Qdy = ϕ(B)−ϕ(A)

for any γ in S from A to B.

Irrotational (curl-free) vector field in R2.

Remark: Conservative implies irrotational, but not vice versa.

Theorem: If S is simply connected, then (P,Q) on S is conservative iff irrotational.

4 Surface integrals

• Surfaces. Continuously differentiable surface. Curvilinear coordinates. ru =
(∂x
∂u
, ∂y
∂u
, ∂z
∂u

), rv = (∂x
∂v
, ∂y
∂v
, ∂z
∂v

). Regular and singular points of a surface. Smooth
surface. Tangent plane. Normal line and normal vector to a surface. First funda-
mental form for a surface:

Q(a, b) = Ea2 + 2Fab+Gb2, E = r2
u, F = rurv, G = r2

v.

If ũ = ϕ(u, v), ṽ = ψ(u, v), then EG− F 2 = (ẼG̃− F̃ 2)
∣∣∣∂(ϕ,ψ)
∂(u,v)

∣∣∣2.

Length of a curve on a surface, r(u(t), v(t)), a ≤ t ≤ b,

L =

ˆ b

a

√
Eu′(t)2 + 2Fu′(t)v′(t) +Gv′(t)2 dt.

Surface area, S = {r(u, v) = (x(u, v), y(u, v), z(u, v)), (u, v) ∈ D},

Area (S) =

¨
D

‖ru × rv‖ dudv =

¨
D

√
EG− F 2 dudv.

• Surface integral of scalar field.

¨
S

fdS =

¨
D

f(x(u, v), y(u, v), z(u, v))
√
EG− F 2 dudv.

Remark: the definition is independent of the parametrization of S.

• Surface integral of vector field. Orientable surface. Orientation by the (continous)
unit normal n = ru×rv

‖ru×rv‖ . Flow of fluid through a surface.
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Integral of a vector field F = (P,Q,R) over a smooth surface oriented by normal n:

¨
S

F · dS =

¨
S

(F · n)dS

If the normal is taken as n = ru×rv
‖ru×rv‖ , then

¨
S

F · dS =

¨
D

F · (ru × rv) dudv =

¨
D

∣∣∣∣∣∣
P Q R
xu yu zu
xv yv zv

∣∣∣∣∣∣ dudv.
In this case, one also uses the notation

˜
S
Pdydz+Qdzdx+Rdxdy with convention

dydz = −dzdy, . . .
Note: Different parametrizations give rise to different orientations of the same sur-
face. A particular care is needed if a surface orientation is specified in advance (e.g.,
a flow of fluid). If a chosen parametrization leads to the opposite orientation, the
change of sign of the integral is necessary.

• Gauss divergence theorem.

Theorem: Let S be a smooth surface surrounding a solid V , positively oriented by
the outgoing normal. Let F = (P,Q,R) be a continously differentiable vector field
in V . Then

˚
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

¨
S+

Pdydz +Qdzdx+Rdxdy.

Divergence, divF = ∂P
∂x

+ ∂Q
∂y

+ ∂R
∂z

.

Divergence is independ of coordinate system: divF = limε→0
1

Vol(Bε)

˜
Sε
F · dS.

Corollary: If V contains holes with boundaries S1, . . . , Sk oriented by outgoing
normals, then

˚
V

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)
dxdydz =

¨
S

F · dS +
k∑
i=1

¨
Si

F · dS.

• Stokes’ theorem.

Theorem: Let S be a smooth surface oriented by the normal ru×rv
‖ru×rv‖ . Let γ be

positively oriented boundary of S. Let F = (P,Q,R) be continuously differentiable
vector field in a neighborhood of S. Then

ˆ
γ

Pdx+Qdy+Rdz =

¨
S

(
∂R

∂y
− ∂Q

∂z

)
dydz+

(
∂P

∂z
− ∂R

∂x

)
dzdx+

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Curl of F , curlF =
(
∂R
∂y
− ∂Q

∂z
, ∂P
∂z
− ∂R

∂x
, ∂Q
∂x
− ∂P

∂y

)
= ∇× F =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

P Q R

∣∣∣∣∣∣.
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Remark: The orientations of the surface and its boundary in Stoke’s theorem agree
by the right-hand rule.

Remark: If S is a subset of {z = 0} and R = 0, then Stokes’ theorem implies
Green’s theorem.

Curl is independent of coordinate system: curlF · ` = limε→0
1

Area(Sε)

´
γ+
Pdx +

Qdy +Rdz.

• Special vector fields. Conservative vector field. Irrotational (curl-free) vector field.
Solenoidal (divergence free) vector field.

Theorem: Let V be simply connected. F in V is solenoidal iff for any smooth surface
S in V surrounding a solid, the flux of F through S is 0.

curl∇ϕ =
−→
0 , div curlF = 0.

Theorem: If V is simply connected, then F is solenoidal iff there exists a vector
field A such that F = curlA. A is called vector potential of F .

Helmholtz theorem (the fundamental theorem of vector calculus): Any smooth vec-
tor field F is the sum of conservative and solenoidal vector fields, F = ∇ϕ+ curlA.

Remark: If divF = 0 and curlF =
−→
0 , then F = ∇ϕ for some ϕ satisfying ∆ϕ = 0

(Laplace equation). Solutions to the Laplace equation are harmonic functions.

5 Complex analysis

• Recall. Algebraic form. Geometric interpretation. Trigonometric form.

Limit of sequence of complex numbers.

Functions of complex variable. Limit of function at a point. Properties of the limit.

Series of complex numbers. Absolutely convergent series.

Series of functions. Uniformly convergent series. M-test for uniform convergence.

Power series. Abel’s theorem: If
∑∞

n=0 cn(z − z0)n converges at some z1 ∈ C, then
it converges absolutely in B(z0, |z1 − z0|) and uniformly in B(z0, γ|z1 − z0|), for all
γ < 1. Radius of convergence. Cauchy-Hadamard formula.

• Elementary functions. Exponential function. Properties: ez1+z2 = ez1 · ez2 , ez 6= 0
for all z, ez+2πi = ez (periodicity).

Logarithm. logw = log |w| + iargw (multi-valued function). Continous branch of
complex logarithm.

Remark: If D does not contain a contour around 0, then log admits a continuous
branch in D.

Power function. a, b ∈ C, ab = eb log a (in general, multi-valued). If b ∈ Z, ab is
single-valued. If b = m

n
, m,n ∈ Z, (m,n) = 1, then ab has n values.

Remark: all elementary functions of complex variable can be expressed with the
exponential and logarithmic functions.

Complex functions as maps.

7



• Complex derivative. Definition.

Theorem: A function f = u+ iv is differentiable at z0 = x0 + iy0 iff

(1) u, v are differentiable at (x0, y0),

(2) Cauchy-Riemann conditions hold:

{
ux = vy
uy = −vx

In this case, ux = vy = Ref ′(z0), uy = −vx = −Imf ′(z0). Thus, f ′ = ux + ivx =
ux − iuy = vy + ivx = vy − iuy.
Holomoriphic function in an open set. Holomorphic function at a point.

Geometric interpretation of the derivative of holomorphic function. Conformal map.

Theorem: Let f(z) =
∑∞

n=0 cn(z − z0)n. Let D = B(z0, R) be the disk of conver-
gence. Then f is holomorphic in D.

Corollary: ez, cos z, sin z, zn (n ∈ N) are holomorphic in C.

• Complex integration. Integral as limit of Riemann sums,
´
γ
f(z)dz. Properties:

(Linearity) If f1 and f2 are integrable functions, then αf1 + βf2 is integrable and´
γ
(αf1 + βf2)(z)dz = α

´
γ
f1(z)dz + β

´
γ
f2(z)dz.

If γR is the reverals of γ, then
´
γR
f(z)dz = −

´
γ
f(z)dz.

(Additivity)
´
γ1∪γ2 f(z)dz =

´
γ1
f(z)dz +

´
γ2
f(z)dz.∣∣∣´γ f(z)dz

∣∣∣ ≤ ´γ |f(z)|ds (The RHS is the line integral of scalar field in R2.)

Computations of the integral:

(1) If f : R→ C, f(t) = u(t) + iv(t), then define
´ b
a
f(t)dt =

´ b
a
u(t)dt+ i

´ b
a
v(t)dt.

(The two integrals on the RHS are usual Riemann integrals.)

Let γ = {z(t) = x(t) + iy(t), a ≤ t ≤ b} such that there exists z′(t) = x′(t) + iy′(t).
Then ˆ

γ

f(z)dz =

ˆ b

a

f(z(t)) z′(t) dt.

(2) If z = x+ iy, f = u+ iv, then

ˆ
γ

f(z)dz =

ˆ
γ

udx− vdy + i

ˆ
γ

vdx+ udy

(The two integrals on the RHS are line integrals of vector fields.)

Antiderivative.

Theorem (Newton-Leibnitz): If F is an antiderivative of f in D, then for all paths
γ in D from a to b, ˆ

γ

f(z)dz = F (b)− F (a).

In particular, for any contour γ in D,
´
γ
f(z)dz = 0.
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Theorem: If D is simply connected, then any holomorphic function f in D has
antiderivative.

Corollary (Cauchy’s theorem): If f is holomorphic in the domain surrounded by γ,
then

�
γ
f(z)dz = 0.

Corollary: If f is holomorphic in D with the outer boundary γ and boundaries of
holes γ1, . . . , γk, then ‰

γ

f(z)dz +
k∑
i=1


γi

f(z)dz = 0.

Theorem (integral Cauchy formula): Let D be open simply connected, f holomor-
phic in D. Then for all z0 ∈ D,

f(z0) =
1

2πi

‰
∂D

f(t)

t− z0

dt.

In particular, if f, g are holomorphic in D and f(t) = g(t) for all t ∈ ∂D, then
f(z) = g(z) for all z ∈ D.

Remark: If z0 /∈ D, then f(z)
z−z0 is holomorphic in D, hence

�
∂D

f(t)
t−z0 dt = 0.

Remark: If γ winds around z0 k times, then f(z0) = 1
2πki

�
γ
f(t)
t−z0 dt.

Theorem: If f is holomorphic in D and continuous in D, then f is infinitely many
times differentiable in D and

f (k)(z) =
k!

2πi

‰
∂D

f(t)

(t− z0)k+1
dt.

• Taylor series.

Theorem: If f is holomorphic in D = B(z0, r), then for all z ∈ D,

f(z) =
∞∑
n=0

cn(z − z0)n, where cn =
f (n)(z0)

n!
=

1

2πi

‰
S(z0,r)

f(t)

(t− z0)n+1
dt.

Analytic function. Analytic = holomorphic.

Corollary: Let f, g be holomorphic in B(z0, r) and f (n)(z0) = g(n)(z0) for all n, then
f(z) = g(z) for all z ∈ B(z0, r).

Theorem: Let f(z) =
∑∞

n=0 cn(z − z0)n in D = B(z0, R) and supz∈D |f(z)| ≤ M .
Then for all n, |cn| ≤ M

Rn
.

Corollary (Liouville theorem): If f is holomorphic and bounded on C, it is constant.

Corollary (Fundamental theorem of algebra): Every polynomial of degree ≥ 1 has
a root in C.
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• Zeros of holomorphic functions.

Theorem: If a ∈ C is a zero of f , then there exists a neighborhood B(a, δ) of a
such that in this neighborhood either f ≡ 0 or a is the unique zero of f . In the
second case, there exists g such that g(z) 6= 0 for all z ∈ B(a, δ) and for some k ≥ 1,
f(z) = g(z)(z − a)k in B(a, δ). k is the order of a.

Theorem: Let f be holomorphic in an open set D. Then either f ≡ 0 in D or all
zeros of f in D are isolated.

Corollary: If f, g are holomorphic in D and {z : f(z) = g(z)} has a cluster point in
D, then f ≡ g in D.

• Isolated singularities. U(a, ε) = {z : 0 < |z − a| < ε}. Removable singularity
(limz→a f(z) ∈ C). Pole (limz→a f(z) =∞). Essential isolated singularity.

Theorem: If a is an isolated singularity for f and f is bounded on U(a, ε), then a
is a removable singularity.

Theorem: If a is a pole for f , then there exists ε > 0 and a function f1 holomorphic
and not equal to zero everywhere in B(a, ε) such that for some k ≥ 1, f(z) = f1(z)

(z−a)k
.

k is the order of the pole.

Remark: Poles are isolated by definition.

Theorem (Casorati-Sokhotski-Weierstrass): Let a be an essential isolated singularity
for f . Then for every w ∈ C ∪ {∞}, there exists zn → a such that f(zn)→ w.

Theorem (Picard’s great theorem): Let a be an essential isolated singularity for f .
For any ε > 0, f takes any C-value in U(a, ε), except for maybe one, infinitely often.

• Laurent series. Ring of convergence.

Theorem: Let f be holomorphic in D = {z : r < |z − z0| < R} (r ≥ 0, R ≤ +∞).
Then for all z ∈ D and ρ ∈ (r, R),

f(z) =
+∞∑

n=−∞

cn(z − z0)n, where cn =
1

2πi

‰
S(z0,ρ)

f(t)

(t− z0)n+1
dt.

Moreover, the series converges absolutely and uniformly on compact subsets of D.

Characterization of isolated singularities:

(1) z0 is a removable singularity iff cn = 0 for all n < 0.

(2) z0 is a pole of order k iff cn = 0 for all n < −k.

(3) z0 is an essential isolated singularity iff infinitely many cn’s (n < 0) are non-zero.

• Residues.

Resz0f =
1

2πi

‰
S(z0,ρ)

f(t) dt = c−1.

Computation of residues:

(1) If z0 is not a singularity or removable singularity, then Resz0f = 0.
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(2) If z0 is a pole of order 1 (simple pole), then Resz0f = limz→z0(z − z0)f(z).

(3) If z0 is a pole of order k, then Resz0f = 1
(k−1)!

limz→z0
dk−1

dzk−1

(
(z − z0)kf(z)

)
.

(4) If f(z) = p(z)
q(z)

, where p, q are holomorphic at z0 and z0 is a zero of q of order 1,
then

Resz0f =
p(z0)

q′(z0)
.

Theorem (Residue theorem): Let D be a bounded subset of C and f a holomorphic
function in D \ {z1, . . . , zn}. Then

‰
∂D

f(z)dz = 2πi
n∑
k=1

Reszkf.

Evaluation of definite integrals with residues:

(1) Let R(x, y) be a real function of two variables such that R(cos t, sin t) is defined
on [0, 2π]. Then ˆ 2π

0

R(cos t, sin t)dt = 2πi
∑

a∈B(0,1)

Resaf,

where f(z) = 1
iz
R(1

2
(z + 1

z
), 1

2i
(z − 1

z
)) and the sum is over all isolated singularities

for f in B(0, 1).

(2) Let P,Q be polynomials such that degQ ≥ degP + 2, Q has no real roots, and
a1, . . . , ak are all the roots of Q with positive imaginary part. Then

ˆ +∞

−∞

P (x)

Q(x)
dx = 2πi

k∑
j=1

Resaj
P

Q
.

(3) Let P,Q be polynomials such that degQ ≥ degP + 1, Q has no real roots, and
a1, . . . , ak are all the roots of Q with positive imaginary part. Then for any α > 0,

ˆ +∞

−∞

P (x)

Q(x)
eiαxdx = 2πi

k∑
j=1

Resaj

(
P

Q
eiαz
)
.

• Conformal maps.

Theorem (Riemann): For any open simply connected D,D′ not equal to C, for all
z0 ∈ D, w0 ∈ D′ and α0 ∈ R, there exists a unique f : D → D′ holomorphic and
bijective such that f(z0) = w0, argf ′(z0) = α0.

Extended complex plane C. Riemann theorem for subsets of C. Stereographic
projection and Riemann sphere.

Linear fractional transformation, w = az+b
cz+d

, ad− bc 6= 0. Holomorphic on C \ {−d
c
},

bijective. Maps circles of C to circles of C. Maps symmetric points to symmetric
points. Uniquely determined by images of three points.
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Upper half plane to the unit disk, f(z) = eiα z−a
z−a .

Unit disk to unit disk, f(z) = eiα z−a
1−az .

Conformal maps with exponential and power functions.

6 Partial differential equations

• Introduction. Derivation of the wave and heat equations.

• First order PDEs. Method of characteristics.{
a(x, t, u)ut + b(x, t, u)ux = c(x, t, u)
u(x, 0) = f(x)

Solving the system of three ordinary differential equations

dt

ds
= a,

dx

ds
= b,

du

ds
= c

gives the solution u(t(s), x(s)) along a (characteristic) curve (t(s), x(s)).

• Classification of 2nd order PDEs. Elliptic, hyperbolic, parabolic. Canonical form.

Canonical form of the PDE

auxx + 2buxy + cuyy + F (x, y, u,∇u) = 0

in a neighborhood of (x0, y0), where a, b, c are twice continuously differentiable, not
zeros all at the same time, can be found as follows:

(1) Solve characteristic equation: a(zx)
2 + 2bzxzy + c(zy)

2 = 0. Assuming a 6= 0, it

reduces to two first order PDEs zx+λ1zy = 0 or zx+λ2zy = 0, where λ1 = b−
√
b2−ac
a

,

λ2 = b+
√
b2−ac
a

.

(2) If d = b2 − ac > 0, the PDE is hyperbolic. The characteristic equation has two
real solutions ξ = ξ(x, y) and η = η(x, y). Taking ξ and η for new variables leads to

the equation ũξη + F̃ = 0.

(3) If d = 0, the PDE is parabolic. The characteristic equation has one real solution

ξ = ξ(x, y). Let η = η(x, y) be such that | ∂(ξ,η)
∂(x,y)

| 6= 0 in a neighborhood of (x0, y0).

Taking ξ and η for new variables leads to the equation ũηη + F̃ = 0.

(4) If d < 0, the PDE is elliptic. The characteristic equation has two solutions
α = α(x, y) and β = β(x, y) such that β = α. Taking ξ = Re(α) and η = Im(α) for

new variables leads to the equation ũξξ + ũηη + F̃ = 0.

Remark: If coefficients in front of the highest derivatives are constants, the canonical
form can be further simplified by substitution u = eλξ+µηv, for suitably chosen λ, µ.
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• Wave equation. Initial conditions. Boundary conditions. Correctly stated problem.

Theorem (uniqueness): There exists at most one u(x, t) twice continuously differ-
entiable in (0, `) × (0,+∞) such that u and ut are continuous in [0, `] × [0,+∞),
which solves the initial-boundary value problem

ρutt = (kux)x + f 0 < x < `, t > 0
u(x, 0) = ϕ(x) 0 ≤ x ≤ `
ut(x, 0) = ψ(x) 0 ≤ x ≤ `
u(0, t) = µ1(t) t ≥ 0
u(`, t) = µ2(t) t ≥ 0.

Existence of solution. Method of characteristics / method of travelling waves.
utt = a2uxx x ∈ R, t > 0
u(x, 0) = ϕ(x) x ∈ R
ut(x, 0) = ψ(x) x ∈ R.

D’Alembert’s formula:

u(x, t) =
ϕ(x+ at) + ϕ(x− at)

2
+

1

2a

ˆ x+at

x−at
ψ(z)dz.

Theorem (existence): If ϕ is twice continuously differentiable, ψ continuously dif-
ferentiable, then u given by d’Alembert’s formula solves the above initial value
problem. The solution is unique and depends continuously on the initial data.

Remark: The unique solution to the inhomogeneous problem utt = a2uxx + f ,
u|t=0 = ϕ, ut|t=0 = ψ is given by the d’Alembert’s formula

u(x, t) =
ϕ(x+ at) + ϕ(x− at)

2
+

1

2a

ˆ x+at

x−at
ψ(z)dz+

1

2a

ˆ t

0

ˆ x+a(t−τ)

x−a(t−τ)

f(ξ, τ)dξ dτ.

Proposition: If in the statement of the homogeneous problem ϕ, ψ are odd with
respect to x0, then u(x0, t) = 0 for all t, if they are even, then ux(x0, t) = 0 for all t.

Solution to the wave equation on [0,+∞) and [0, `] using reflections of initial data.

• Fourier series. Trigonometric series.

Theorem: If a0
2

+
∑∞

k=1(ak cos kx+bk sin kx) converges uniformly on [−π, π], then its
sum f(x) is continuous on [−π, π], f(π) = f(−π), and the Euler-Fourier relations
hold:

ak =
1

π

ˆ π

−π
f(t) cos ktdt, bk =

1

π

ˆ π

−π
f(t) sin ktdt.

Fourier series of an absolutely integrable function,

f(x) ∼ a0

2
+
∞∑
k=1

(ak cos kx+ bk sin kx).
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Piecewise continuous functions on [a, b], PC[a, b]. Piecewise continuously differen-
tiable functions on [a, b], PC′[a, b].

Theorem (Dirichlet): Let f ∈ PC′[−π, π] and f(x) ∼ a0
2

+
∑∞

k=1(ak cos kx+bk sin kx).
Then

(1) For all x ∈ (−π, π), a0
2

+
∑∞

k=1(ak cos kx+ bk sin kx) = f(x),

for x ∈ {−π, π}, a0
2

+
∑∞

k=1(ak cos kx+ bk sin kx) = f(π)+f(−π)
2

,

(2) The Fourier series converges uniformly on any [a, b] ⊂ (−π, π),

(3) If f(−π) = f(π), then the Fourier series converges uniformly to f on [−π, π].

Exponential form: f(x) ∼
∑+∞

n=−∞ cke
ikx, ck = 1

2π

´ π
−π f(t)e−iktdt.

Arbitrary interval: f : [−`, `]→ R, f(x) ∼ a0
2

+
∑∞

k=1(ak cos πkx
`

+ bk sin πkx
`

)

Corollary: Every f ∈ PC′[0, L] with f(0) = f(L) can be expanded in the uniformly
convergent series of sines and cosines:

(1) f(x) =
∑∞

k=1 bk sin πkx
L

, bk = 2
L

´ L
0
f(t) sin πkt

L
dt.

(2) f(x) = a0
2

+
∑∞

k=1 ak cos πkx
L

, ak = 2
L

´ L
0
f(t) cos πkt

L
dt.

Theorem (Bessel’s inequality): If
´ +∞
−∞ f(x)2dx <∞ and f(x) ∼

∑
n cne

inx, then∑
n

|cn|2 ≤
1

2π

ˆ π

−π
f(x)2dx.

Theorem (decay of Fourier coefficients):

(1) If f ∈ PC[−π, π], then
∑

k |ck|2 <∞.

(2) If f ∈ PC′[−π, π], f(−π) = f(π), then
∑

k |kck|2 <∞,
∑

k |ck| <∞.

(3) If f is r times continuously differentiable, f (r) ∈ PC′[−π, π], f (m)(−π) = f (m)(π),
0 ≤ m ≤ r, then

∑
k |kr+1ck|2 <∞,

∑
k |krck| <∞.

• Fourier method for wave equation. Homogeneous equation.

Theorem: If ϕ′′ ∈ PC′[0, `], ϕ′′(0) = ϕ′′(`) = 0 and ψ′ ∈ PC′[0, `]. Then the
initial-boundary value problem

utt = a2uxx x ∈ (0, `), t > 0
u(x, 0) = ϕ(x) x ∈ [0, `]
ut(x, 0) = ψ(x) x ∈ [0, `]
u(0, t) = u(`, t) = 0 t ≥ 0

has a solution that can be represented as the sum of standing waves

u(x, t) =
∞∑
n=1

(
An cos

πnat

`
+Bn sin

πnat

`

)
sin

πnx

`
,

where An = 2
`

´ `
0
ϕ(x) sin πnx

`
dx, Bn = 2

πna

´ `
0
ψ(x) sin πnx

`
dx.

Solution of the inhomogeneous equation.
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• Heat equation. Initial and boundary conditions. Uniqueness of the solution.

Theorem (maximum principle): If u(x, t) is a continuous function in [0, `] × [0, T ]
that satisfies ut = a2uxx in (0, `) × (0, T ], then the maximum (minimum) of u on
[0, `]× [0, T ] is attained at t = 0 or at x ∈ {0, `}.
Solution of the homogeneous and inhomogeneous heat equations using Fourier
method.

Heat equation in three dimensions.

Heat equation on R. Solution using Fourier transform.

• Laplace and Poisson equations. Dirichlet’s and Neumann’s boundary value prob-
lems. Harmonic functions. Properties of harmonic functions:

(1) If u is harmonic in Ω, then
˜
∂Ω

∂u
∂n
dS = 0.

(2) (mean value property) If u is harmonic in Ω then for all M0 ∈ Ω and all r > 0
such that B(M0, r) ⊂ Ω,

u(M0) =
1

4πr2

¨
S(M0,r)

udS.

(3) (maximum principle) If u is continuous in Ω and harmonic in Ω, then the max-
imum and minimum of u are attained at ∂Ω.

Theorem (uniqueness): Dirichlet’s boundary value problem has at most one solution.

Existence of solution to the Laplace equation for sufficiently symmetric domains:

(1) In the disk Ω = B(0, R), ∆u = 0, u(R,ϕ) = µ(ϕ). Fourier method. Poisson
formula:

u(r, ϕ) =
1

2π

ˆ 2π

0

µ(θ)
R2 − r2

R2 − 2rR cos(ϕ− θ) + r2
dθ.

Remark: The Poisson formula gives solution to the Dirichlet’s problem in a disk for
any continuous µ.

(2) In the rectangle [0, a]× [0, b].

Remark: For certain Ωs, the unique solution to the Laplace equation can be found
using conformal maps.
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