EXERCISES, Week 9 (submit by 12.12.2016)

- 1. Let γ be a (continuously differentiable) positively oriented boundary of a set $S \subset \mathbb{C}$ with area A. Compute the integral $\int x dz$.
- 2. Compute the integral $\int_{\gamma} y dz$, where γ is
 - (a) the line segment between 0 and 2 + i,
 - (b) the semicircle |z| = 1, $\text{Im} z \ge 0$ starting from the point z = 1.
- 3. Compute the integral $\int_{\gamma} \log z dz$, where you need to select a continuous branch of the logarithm based on the given value of the logarithm at one of the points on γ :
 - (a) γ is the unit circle |z| = 1 oriented counterclockwise and started at z = 1, and $\log 1 = 0$,
 - (b) γ is the unit circle |z| = 1 oriented counterclockwise and started at z = i, and $\log i = \frac{\pi i}{2}$.
- 4. Let γ be a positively oriented contour in \mathbb{C} . Compute $\int_{\alpha} \frac{dz}{z^2+9}$ if
 - (a) γ surrounds the point 3i, but does not surround the point -3i,
 - (b) γ surrounds the point -3i, but does not surround the point 3i,
 - (c) γ surrounds the points 3i and -3i,
 - (d) γ surrounds neither the point 3i nor -3i.
- 5. Compute the integral $\int_{\gamma} \frac{zdz}{z^4-1}$, where γ is a positively oriented circle |z-a| = a, and a > 1 is a real number.
- 6. Compute the integral $\frac{1}{2\pi i} \int \frac{e^z dz}{z^2 + a^2}$, where γ is a positively oriented contour surrounding the points ai and -ai. Here a is a positive real number.
- 7. Compute the integral $\frac{1}{2\pi i} \int_{\gamma} \frac{ze^z}{(z-a)^3} dz$, where γ is a positively oriented contour surrounding $a \in \mathbb{C}$.