EXERCISES, Week 8 (submit by 05.12.2016)

1. Find the real and imaginary parts of

(a)
$$\cos(2+i)$$
 (b) $\log i$ (c) 2^i (d) i^i

2. Let $a, b \in \mathbb{C}$. Which of the following sets are equal?

$$a^{2b}, (a^b)^2, (a^2)^b$$

3. Prove that for each $z \in \mathbb{C}$, $\lim_{n \to \infty} \left(1 + \frac{z}{n}\right)^n = e^z$.

Hint: Use the fact that a sequence of complex numbers $z_n = r_n e^{i\varphi_n}$ converges to $z = r e^{i\varphi}$ as $n \to \infty$ if and only $r_n \to r$ and $\varphi_n \to \varphi$ as $n \to \infty$.

4. For which $a \in \mathbb{C}$ the following function is continuous at 0?

$$f(z) = \begin{cases} \frac{\text{Re}z}{z} & \text{if } z \neq 0\\ a & \text{if } z = 0. \end{cases}$$

- 5. For $a, b, c \in \mathbb{R}$ and z = x + iy, let f(z) = x + ay + i(bx + cy). For which values of a, b, c the function f is holomorphic?
- 6. Check that $f(z) = \cos z$ satisfies the Cauchy-Riemann conditions and show that $(\cos z)' = -\sin z$.
- 7. Prove that the function $f(z) = \overline{z}$ is nowhere differentiable.
- 8. Is the function $f(z) = z \operatorname{Re} z$ differentiable at z = 0? Is it holomorphic at z = 0?
- 9. For z = x + iy, let $f(z) = \sqrt{|xy|}$. Prove that f satisfies the Cauchy-Riemann conditions at z = 0, but f is not differentiable at z = 0.
- 10. Let $f(z) = z^2$.
 - (a) Determine the angle of rotation of the complex plane by f at the point z = 1+i.
 - (b) Which part of the complex plane is stretched and which is contracted by f?