EXERCISES, Week 6 (submit by 21.11.2016)

- 1. Compute the following surface integrals of scalar fields.
 - (a) $\iint_{S} (x+y+z)dS$, where S is the upper semisphere: $x^2 + y^2 + z^2 = 1, z \ge 0$.
 - (b) $\iint_{S} (x^2 + y^2) dS$, where S is the full surface of the cone $\sqrt{x^2 + y^2} \le z \le 1$.
 - (c) $\iint_{S} \frac{dS}{\sqrt{\frac{x^2}{a^4} + \frac{y^2}{b^4} + \frac{z^2}{c^4}}}$, where S is the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - (d) $\iint_{S} xyz \, dS$, where S is the surface of the cube $0 \le x \le a, 0 \le y \le a, 0 \le z \le a$. (e) $\iint_{S} z \, dS$, where S is part of the elliptic paraboloid $2z = x^2 + y^2$ satisfying $z \le 1$.
- 2. Compute the following surface integrals of vector fields.
 - (a) $\iint_{S} (x^2 + y^2) dx dy$, where S is the bottom side of the disc $x^2 + y^2 \le 4$, z = 0.
 - (b) $\iint_{S} (2z x) dy dz + (x + 2z) dz dx + 3z dx dy$, where S is the upper side of the triangle x + 4y + z = 4, $x \ge 0$, $y \ge 0$, $z \ge 0$.
 - (c) $\iint_{S} x^2 dy dz$, where S is the outer side of the sphere $x^2 + y^2 + z^2 = 1$.
 - (d) $\iint_{S} (x-1)^3 dy dz$, where S is the inner side of the upper semisphere $x^2 + y^2 + z^2 = 2x, z \ge 0$.
 - (e) $\iint_{S} x \, dy dz$, where S is the outer side of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
 - (f) $\iint_{S} x^{6} dy dz + y^{4} dz dx + z^{2} dx dy$, where S is the lower side of the elliptic paraboloid $z = x^{2} + y^{2}, z \leq 1$.