EXERCISES, Week 4 (submit by 07.11.2016)

- 1. Compute $\int_{\gamma} (x+y) ds$, where γ is the boundary of the triangle in \mathbb{R}^2 with vertices at (0,0), (1,0), (0,1).
- 2. Compute $\int_{\gamma} xy \, ds$, where γ is the part of the circle $x^2 + y^2 = 1$ located in the positive quadrant $\{(x, y) \mid x \ge 0, y \ge 0\}$.
- 3. Compute $\int_{\gamma} z \, ds$, where γ is the helix in \mathbb{R}^3 , $\{(x, y, z) \mid x = t \cos t, y = t \sin t, z = t, 0 \le t \le 2\pi\}$.
- 4. Compute $\int_{\gamma} xy \, dx$, where γ is the oriented curve $\{(x, y) \mid y = \sin x, 0 \leq x \leq \pi\}$ with the orientation from x = 0 to $x = \pi$.
- 5. Compute $\int_{\gamma} 2xy \, dx + x^2 \, dy$, where γ is the oriented curve $\{(x, y) \mid y = \frac{x^2}{4}, 0 \le x \le 2\}$ with the orientation from x = 0 to x = 2.
- 6. Compute $\int_{\gamma} (y+z) dx + (z+x) dy + (x+y) dz$, where γ is the oriented curve $\{(x, y, z) \mid x = \sin^2 t, y = 2 \sin t \cos t, z = \cos^2 t, 0 \le t \le \pi\}$ with the orientation from t = 0 to $t = \pi$.