EXERCISES, Week 3 (submit by 01.11.2016)

- 1. By changing to polar coordinates, write $\iint_S f(x, y) dx dy$ as an iterated integral if $S = \{(x, y) \mid x^2 + y^2 \leq 2ax, y \geq x\}$ (a > 0).
- 2. Compute the integral $\iint_S f(x, y) dx dy$ using polar coordinates if
 - (a) $f(x,y) = y^2 e^{x^2 + y^2}$ and $S = \{(x,y) \mid x \ge 0, y \ge 0, x^2 + y^2 \le 1\},\$
 - (b) f(x,y) = x and $S = \{(x,y) \mid ax \le x^2 + y^2 \le 2ax, y \ge 0\}$ (a > 0),
 - (c) f(x,y) = y and $S = \{(x,y) \mid 0 \le x \le (x^2 + y^2)^{\frac{3}{2}} \le 1, y \ge 0\}.$
- 3. Compute the integrals using the suggested change of variables
 - (a) $\int_{a}^{b} dx \int_{\alpha x}^{\beta x} \frac{y}{x} dy$, where 0 < a < b, $\alpha < \beta$. Change of variables: $u = x, v = \frac{y}{x}$.
 - (b) $\int_0^1 dx \int_{-2-x}^{2-x} y dy$. Change of variables: u = x, v = x + y.
 - (c) $\iint_{S} \left(\frac{x^2}{a^2} + \frac{y^2}{b^2}\right) dx dy$, where S is bounded by the curve $\begin{cases} x = a \sin t \\ y = b \cos t \end{cases}$, $0 \le t \le \frac{\pi}{2}$ and the axes x = 0, y = 0. Change of variables: $x = ar \sin t, y = br \cos t$.
 - (d) $\iint_S xy \, dx \, dy$, where S is given by the inequalities $x \ge 0$, $y \ge 0$, $x^4 + y^4 \le a^4$ (a > 0). Change of variables: $x = r\sqrt{\cos \varphi}$, $y = r\sqrt{\sin \varphi}$.
- 4. Compute the integral $\iint_S f(x, y) dx dy$ by making a suitable change of variables
 - (a) $f(x,y) = xy, S = \{(x,y) \mid |x+2y| \le 3, |x-y| \le 3\},\$
 - (b) $f(x,y) = y^2$, $S = \{(x,y) \mid 1 \le xy \le 3, 0 < x \le y \le 2x\}$,
 - (c) $f(x,y) = x, S = \{(x,y) \mid x \ge 0, y \ge 0, \left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} \le 1\}.$
- 5. By changing to spherical coordinates, write $\iiint_S f(x, y, z) dx dy dz$ as an iterated integral, if S is given by the inequalities $x^2 + y^2 + z^2 \leq 2az$, $x^2 + y^2 \geq z^2$ (a > 0).
- 6. Compute the integral $\iiint_S f(x, y, z) dx dy dz$ using spherical or cylindrical coordinates
 - (a) $f(x, y, z) = x^2 + y^2 z^2$ and $S = \{(x, y, z) \mid 1 \le x^2 + y^2 + z^2 \le 4, x \ge 0, y \ge 0\},\$
 - (b) $f(x, y, z) = x^2 + y^2$ and $S = \{(x, y, z) \mid \frac{x^2 + y^2}{2} \le z \le 2\},\$
 - (c) $f(x, y, z) = \sqrt{y^2 + z^2}$ and S is bounded by surfaces $y^2 + z^2 = 1$, y + x = 1, y x = 1.