EXERCISES, Week 2 (submit by 24.10.2016)

1. Compute the iterated integral

$$\int_{-\pi}^{\pi} dx \, \int_{\sin x}^{\cos x} dy \, \int_{y+x}^{y-x} (x+y+z) dz \, .$$

- 2. Write the integral $\iint_S f(x,y) dxdy$ as an iterated integral, if S is
 - (a) the triangle bounded by the lines x = 0, y = 0, ax + by = c,
 - (b) rectangle bounded by the lines y = 0, y = a, x + y = 0, x + y = 2a,
 - (c) bounded by the curves $x = 0, x = 1, x = y^2, y = e^x$,
 - (d) given by the inequalities $x^2 + y^2 \le 1, x + y \ge 0$.
- 3. Change the order of integration.

(a)
$$\int_0^1 dy \int_0^{y^2} f(x,y) dx$$
 (b) $\int_1^2 dx \int_{\ln x}^{3x} f(x,y) dy$

4. Compute the iterated integral

$$\int_0^1 dy \, \int_y^1 e^{x^2} dx.$$

- 5. Compute the multiple integrals
 - (a) $\iint_S x^2 y^2 dx dy$, where S is bounded by the curves $x = 1, x = y^2$.
 - (b) $\iint_S (x+y) dx dy$, where S is given by the inequalities $x^2 + y^2 \le 1, y \ge x$.
 - (c) $\iint_{S} |xy| dx dy$, where S is given by the inequalities $a^2 \le x^2 + y^2 \le b^2$ (0 < a < b).
- 6. Write $\iiint_S f(x, y, z) dx dy dz$ as an iterated integral, if S is given by the inequalities $x \ge 0, z \ge 0, x^2 + y^2 \le a^2, y^2 + z^2 \le a^2$.
- 7. Compute the multiple integrals
 - (a) $\iiint_{S}(xy)^{2}dxdydz$, where S is given by the inequalities $0 \le x \le y \le z \le 1$.
 - (b) $\iiint_S (x+2y+3z) dx dy dz$, where S is the prism bounded by the planes y = 0, z = 0, z = 2, x + y = 2, 2x y + 2 = 0.