EXERCISES, Week 10 (submit by 19.12.2016)

1. Expand the function $\frac{z^2}{(z+1)^2}$ in the power series

(a)
$$\sum_{n=0}^{\infty} a_n z^n$$
 (b) $\sum_{n=0}^{\infty} b_n (z-1)^n$

and find the radii of convergence of the series (a) and (b).

2. Find all zeros and their orders for the following functions:

(a)
$$1 - \cos z$$
 (b) $z \sin z$ (c) $z^2 (e^{z^2} - 1)$.

- 3. Does there exist a function f holomorphic at z=0 and such that $f(\frac{1}{n}), n \geq 1$, equals
 - (a) $0, 1, 0, 1, 0, 1, 0, 1, \dots$
 - (b) $0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, 0, \frac{1}{8}, \dots$
 - (c) $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{8}$, $\frac{1}{8}$, ...
 - (d) $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$,

Justify your answers.

4. Find all isolated singularities for the following functions and determine their types:

(a)
$$\frac{1}{z(1+z^2)}$$
 (b) $ze^{\frac{1}{z}}$ (c) $\frac{1}{\sin z}$ (d) $\cos \frac{1}{z}$ (e) $\sin \frac{1}{z} + \frac{1}{z}$.

5. Find the Laurent series for the following functions:

(a)
$$\frac{1}{z+2}$$
 in
 (i) $0 < |z| < 2$ (ii) $2 < |z| < \infty$

(b)
$$\frac{1}{z(1-z)}$$
 in
 (i) $0 < |z| < 1$ (ii) $0 < |z-1| < 1$

(c)
$$\frac{1}{(z-a)(z-b)}$$
 (here $a,b\in\mathbb{C}$ and $0<|a|<|b|)$ in

(i)
$$0 < |z| < |a|$$
 (ii) $0 < |z - a| < |b - a|$ (iii) $|a| < |z| < |b|$

(d)
$$z^2 \sin \frac{1}{z-1}$$
 in $0 < |z-1| < \infty$.