EXERCISES, Week 1 (submit by 18.10.2016)

1. Prove that for any bounded $S_1 \subseteq S_2$,

(a)
$$\mu^*(S_2 \setminus S_1) \le \mu^*(S_2) - \mu_*(S_1),$$

(b) $\mu_*(S_2 \setminus S_1) \ge \mu_*(S_2) - \mu^*(S_1).$

- 2. Prove that any rectifiable curve in \mathbb{R}^2 has Jordan measure 0.
- 3. Let S_1, S_2 be Jordan measurable sets. Prove that $S_1 \cup S_2$ and $S_1 \cap S_2$ are Jordan measurable.
- 4. Let $S_1 \subseteq S_2$ be Jordan measurable. Prove that $S_2 \setminus S_1$ is Jordan measurable and $\mu(S_2 \setminus S_1) = \mu(S_2) \mu(S_1)$.
- 5. Prove that for any S in \mathbb{R}^n ,

(a)
$$\mu_*(S) = \sup_{\substack{S' \subseteq S, \text{ meas.}}} \mu(S'),$$

(b) $\mu^*(S) = \inf_{\substack{S' \supseteq S, \text{ meas.}}} \mu(S'),$

where the sup is taken over all measurable S' contained in S, and the inf over all measurable S' that contain S.

6. Let g be an integrable function on [a, b] and h an integrable function on [c, d] so that $\int_a^b g(z)dz = \int_c^d h(z)dz = 1$. Let $S = [a, b] \times [c, d]$ be a rectangle in \mathbb{R}^2 . Use the definition of Riemann integral to compute $\int_S f(x)dx$ if

(a)
$$f(x) = g(x_1) + h(x_2)$$
, (b) $f(x) = g(x_1) h(x_2)$.