
Prof. A. Sapozhnikov Mathematics 3 (10-PHY-BIPMA3)

RETAKE SOLUTIONS, 6 April 2018, 10:00 – 12:00

1. Find the area bounded by the curves y = x, y = 2x, y = x2.

Answer: 7
6
.

Solution. Denote the given set by S. We change variables by u = y
x
, v = x, then

the set S is parametrized as 1 ≤ u ≤ 2, 0 ≤ v ≤ u. The inverse change of variables

is x = v, y = uv. Thus, the Jacobian equals

∣∣∣∣ 0 1
v u

∣∣∣∣ = −v, and the area is

¨
S

dS =

ˆ 2

1

du

ˆ u

0

vdv =

ˆ 2

1

u2

2
dy =

7

6
.

Another way would be to note that S is normal and use Fubini’s theorem.

2. Let γ be the circle given by the equations x2 + y2 + z2 = 1, y = x. Compute the
line integral ˆ

γ

ds√
2y2 + z2

.

Answer: 2π.

Solution. Note that on γ, 2y2 + z2 = x2 + y2 + z2 = 1. Thus, the integral equals to
the length of γ. Since γ is a great circle of the unit sphere, its length is 2π.

One could also solve this problem by finding an explicit parametrization of γ, for instance,
x = y = 1√

2
cosϕ, z = sinϕ, where 0 ≤ ϕ ≤ 2π. Then, 2y2 + z2 = 1, and the integral

equals to

ˆ 2π

0

√
(x′)2 + (y′)2 + (z′)2dϕ =

ˆ 2π

0

√
(
− sinϕ√

2
)2 + (

− sinϕ√
2

)2 + (cosϕ)2dϕ = 2π.

3. Let γ be the curve y = log x, 1 ≤ x ≤ e. Compute the line integral
´
γ
y
x
dx+ dy.

Answer: 3
2
.

Solution. By the definition of line integral,
ˆ
γ

y

x
dx+ dy =

ˆ e

1

(
lnx

x
1 + 1

1

x

)
dx =

1

2
(lnx+ 1)2

∣∣e
1

=
3

2
.

4. Let S be the surface given by z =
√
x2 + y2, z ≤ 1. Compute the surface integral

¨
S

(x2 + y2)dS.

Answer: π√
2
.



Solution. Consider the parametrization of S: x = u cos v, y = u sin v, z = u, with
0 ≤ v ≤ 2π, 0 ≤ u ≤ 1. We first find the coefficients of the first fundamental form of
S in this parametrization. The basis of the tangent plane is ru = (cos v, sin v, 1) and
rv = (−u sin v, u cos v, 0). Thus, E = 2, F = 0, G = u2, and

√
EG− F 2 = u

√
2. By

the definition of surface integral and the Fubini theorem,

¨
S

(x2 + y2)dS =

ˆ 2π

0

dv

ˆ 1

0

u2 u
√

2 du =
π√
2
.

5. Let S be the ellipsoid x2

4
+ y2

9
+ z2 = 1 oriented inward. Let F = (x + y, 0, x + z).

Compute the surface integral
˜
S
F · dS.

Answer: −16π.

Solution. The problem can be solved directly by using the definition of the surface
integral, however it is simpler to use the Gauss-Ostrogradsky theorem. Indeed, let
V be the volume surrounded by S. Then,

¨
S

F · dS = −
˚

V

divF dV = −2

˚
V

dV.

(Here we put a minus sign, since S is oriented inward.) Now, the volume of ellipsoid
x2

a2
+ y2

b2
+ z2

c2
≤ 1 is 4

3
πabc, and the above integral equals to −2 4

3
π 2 3 1 = −16π.

One can, of course, verify the volume formula directly by using the generalized
spherical coordinates: x = 2r cosϕ sinψ, y = 3r sinϕ sinψ, z = r cosψ, with 0 ≤
ϕ ≤ 2π, 0 ≤ ψ ≤ π. Indeed, the Jacobian equals to −6r2 sinψ, so

−2

˚
V

dV = −2

ˆ 2π

0

dϕ

ˆ π

0

dψ

ˆ 1

0

(
6r2 sinψ

)
dr = −16π.

6. Let γ be the boundary of the triangle with vertices (1, 0, 0), (0, 1, 0), (0, 0, 2), pos-
itively oriented with respect to the vector (0, 1, 0). Let F = (y, z, x). Use Stokes’
theorem to compute the line integral

´
γ
F · ds.

Answer: −5
2
.

Solution. Let S be the given triangle, positively oriented with respect to the vector
(0, 1, 0), i.e., the upper side of the triangle. By Stokes’ theorem,

´
γ
F ·ds =

˜
S
(curlF ·

n)dS, where n is the unit normal to S.

We first compute the curl, curlF =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y z x

∣∣∣∣∣∣ = −(1, 1, 1). To find the normal

n, denote the vertices of the triangle by A = (1, 0, 0), B = (0, 1, 0), C = (0, 0, 2)
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and let a =
−→
AB = (−1, 1, 0), b =

−→
AC = (−1, 0, 2). Then n = a×b

‖a×b‖ . Since

a× b =

∣∣∣∣∣∣
i j k
−1 1 0
−1 0 2

∣∣∣∣∣∣ = (2, 2, 1), the unit normal is n =
(
2
3
, 2
3
, 1
3

)
. Thus,

¨
S

(curlF · n)dS = −5

3

¨
S

dS = −5

3

‖a× b‖
2

= −5

2
.

7. Is the function f(z) =

{
z2 sin 1

z
z 6= 0

0 z = 0
holomorphic at 0? Give a proof.

Answer: no.

Solution. One way to solve this problem is to show that f is not even continuous
at 0. Indeed,

f

(
i

n

)
=
−1

n2
sin(−in) =

−1

n2

1

2i

(
en − e−n

)
6→ 0.

Another way is to use that z = 0 is a zero of f . Indeed, if f is holomorphic at 0,
then 0 must be an isolated zero of f , but it is not, since f( 1

πn
) = 1

(πn)2
sin(πn) = 0

and 1
πn
→ 0 as n→∞.

8. Compute the integral 1
2πi

�
|z−i|=1

dz
z2−i .

Answer: 1−i
2
√
2
.

Solution. First write z2 − i =
(
z − eπi4

)(
z + e

πi
4

)
. Note that the circle |z − i| = 1

surrounds the point e
πi
4 , but not the point−eπi4 . Thus, by Cauchy’s integral formula,

1

2πi

‰

|z−i|=1

dz

z2 − i
=

1

z + e
πi
4

∣∣∣
z=e

πi
4

=
1

2
e−

πi
4 =

1− i
2
√

2
.

9. Compute the integral 1
2πi

�
|z|=1

z cos 1
z
dz.

Answer: −1
2
.

Solution. By the residue theorem, 1
2πi

�
|z|=1

z cos 1
zdz = Resz=0

(
z cos 1

z

)
. Note

that z = 0 is an essential isolated singularity for f(z) = z cos 1
z
. We use the fact
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that Resz=0f(z) = c−1, where c−1 is the coefficient in front of z−1 in the Laurent
expansion of f centered at z = 0. We compute

z cos
1

z
= z

(
1− 1

2! z2
+

1

4! z4
− 1

6! z6
+ . . .

)
= z − 1

2z
+

1

4! z3
− . . . .

Thus, c−1 = −1
2
.

10. Find the largest r > 0 such that the following PDE has the same type (elliptic,
parabolic, or hyperbolic) at all points of the ball (x − 2)2 + (y + 1)2 < r2 and
determine its type in this ball.

2xy uxx + y uxy +
1

8
uyy + 4ux = 6.

Answer: 1, hyperbolic.

Solution. A second order PDE auxx+ 2buxy + cuyy + . . . = 0 is elliptic if ac− b2 > 0,
parabolic if = 0 and hyperbolic if < 0. In our case, a = 2xy, b = y

2
, c = 1

8
, and

ac− b2 = 1
4
y(x− y), so the PDE is elliptic if y(x− y) > 0, parabolic if y(x− y) = 0

and hyperbolic if y(x− y) < 0. At the center of the ball, (2,−1), y(x− y) = −3, so
the PDE is hyperbolic. Furthermore, the point (2,−1) is at distance 1 from the line
y = 0 and at distance > 1 from the line y = x. Thus, r = 1 is the largest radius,
such that the PDE is hyperbolic in the ball of radius r centered at (2,−1).

11. Solve the initial value problem{
utt = uxx + ex x ∈ R, t > 0
u(x, 0) = ut(x, 0) = 0 x ∈ R.

Answer: 1
2
(ex−t + ex+t)− ex.

Solution. This immeidately follows from d’Alembert’s formula for the solution to
inhomogeneous wave equation.

It can also be solved directly (basically repeating the proof of d’Alembert’s formula
in this special case). Define the variables ξ = x− t, η = x+ t. By the chain rule,

ut = −uξ + uη, utt = uξξ − 2uξη + uηη, ux = uξ + uη, uxx = uξξ + 2uξη + uηη.

Thus, the equation in the new variables is −4uξη = ex = e
ξ+η
2 . By integrating with

respect to ξ and η we find the general form of the solution to the PDE utt = uxx+ex:

u(x, t) = −e
ξ+η
2 + f(ξ) + g(η) = −ex + f(x− t) + g(x+ t),

where f, g are arbitrary functions. It remains to find f and g such that u satisfies
the initial conditions. We have u(x, 0) = −ex + f(x) + g(x) = 0 and ut(x, 0) =
−f ′(x) + g′(x) = 0. Thus, f(x) = g(x) = 1

2
ex and u(x, t) = −ex + 1

2
ex−t + 1

2
ex+t.

One other way to solve this problem is to observe that its solution can be written as
u = v−ex, where v solves the homogeneous equation vtt = vxx with initial conditions
v(x, 0) = ex, vt(x, 0) = 0, which, by d’Alembert’s formula, now for the homogeneous
wave equation, equals to 1

2
(ex−t + ex+t).
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