EXERCISES, Week 8 (submit by 06.12.2017)

1. Let S be the smooth boundary of a solid object in \mathbb{R}^3 and ν its outward unit normal. Let ℓ be a fixed vector of \mathbb{R}^3 . Prove that $\iint_S \cos(\hat{\ell}, \nu) \, dS = 0$.

(Here $\widehat{\ell, \nu}$ denotes the angle between ℓ and ν .)

- 2. Use the Stokes theorem to compute the following line integrals.
 - (a) $\int_{\gamma} (x+z)dx + (x-y)dy + xdz$, where γ is the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, z = 1 oriented counter-clockwise viewed from the point (0, 0, 0).
 - (b) $\int_{\gamma} y^2 dx + z^2 dy + x^2 dz$, where γ is the triangle with vertices (a, 0, 0), (0, a, 0), (0, 0, 0), (0, 0, 0), (0, 0, 0).
 - (c) $\int_{\gamma} y dx + z dy + x dz$, where γ is the circle $x^2 + y^2 + z^2 = R^2$, x + y + z = 0 oriented counter-clockwise viewed from the point (0, 0, 1).
 - (d) $\int_{\gamma} z^2 dy + x^2 dz$, where γ is the curve $y^2 + z^2 = 9$, 4x + 3z = 5 oriented clockwise viewed from the point (0, 0, 0).
- 3. (a) Let u and v be scalar fields on \mathbb{R}^3 . Let $F = u\nabla v$. Prove that $\nabla \times F$ is orthogonal to F.
 - (b) Let F be an arbitrary vector field on \mathbb{R}^3 . Is $\nabla \times F$ orthogonal to F?