EXERCISES, Week 2 (submit by 25.10.2017)

1. Let g be an integrable function on [a, b] and h an integrable function on [c, d] so that $\int_a^b g(z)dz = \int_c^d h(z)dz = 1$. Let $S = [a, b] \times [c, d]$ be a rectangle in \mathbb{R}^2 . Use the definition of Riemann integral to compute $\int_S f(x)dx$ if

(a) $f(x) = g(x_1) + h(x_2)$, (b) $f(x) = g(x_1) h(x_2)$.

2. Compute the iterated integral

$$\int_{-\pi}^{\pi} dx \, \int_{\sin x}^{\cos x} dy \, \int_{y+x}^{y-x} \, (x+y+z) dz \, .$$

- 3. Write the integral $\iint_S f(x,y) dxdy$ as an iterated integral, if S is
 - (a) the triangle bounded by the lines x = 0, y = 0, ax + by = c,
 - (b) bounded by the curves $x = 0, x = 1, x = y^2, y = e^x$.
- 4. Change the order of integration.

(a)
$$\int_0^1 dy \, \int_0^{y^2} f(x,y) dx$$
 (b) $\int_1^2 dx \, \int_{\ln x}^{3x} f(x,y) dy$.

5. Compute the multiple integrals

- (a) $\iint_S x^2 y^2 dx dy$, where S is bounded by the curves $x = 1, x = y^2$.
- (b) $\iint_{S} (x+y) dx dy$, where S is given by the inequalities $x^2 + y^2 \le 1, y \ge x$.
- (c) $\iint_S |xy| dx dy$, where S is given by the inequalities $a^2 \le x^2 + y^2 \le b^2$ (0 < a < b).