EXERCISES, Week 11 (submit by 10.01.2018)

1. Use Cauchy's integral formula for derivatives to compute the integral

$$\frac{1}{2\pi i} \int_{\gamma} \frac{ze^z}{(z-a)^3} dz,$$

where γ is a positively oriented contour surrounding $a \in \mathbb{C}$.

2. Expand the function $\frac{z^2}{(z+1)^2}$ in the power series

(a)
$$\sum_{n=0}^{\infty} a_n z^n$$
 (b) $\sum_{n=0}^{\infty} b_n (z-1)^n$

and find the radii of convergence of the series (a) and (b).

3. Find all zeros and their orders for the following functions:

(a)
$$1 - \cos z$$
 (b) $z \sin z$ (c) $z^2 (e^{z^2} - 1)$.

4. Does there exist a function f holomorphic at z=0 and such that $f(\frac{1}{n}), n \geq 1$, equals

(a)
$$0, 1, 0, 1, 0, 1, 0, 1, \dots$$

(b)
$$0, \frac{1}{2}, 0, \frac{1}{4}, 0, \frac{1}{6}, 0, \frac{1}{8}, \dots$$

(c)
$$\frac{1}{2}$$
, $\frac{1}{2}$, $\frac{1}{4}$, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{6}$, $\frac{1}{8}$, $\frac{1}{8}$, ...

(d)
$$\frac{1}{2}$$
, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{5}{6}$, $\frac{6}{7}$,

Justify your answers.