EXERCISES, Week 10 (submit by 03.01.2018)

- 1. Let $f(z) = z^2$.
 - (a) Determine the angle of rotation of the complex plane by f at the point z = 1+i.
 - (b) Which part of the complex plane is stretched and which is contracted by f?
- 2. Let γ be a (continuously differentiable) positively oriented boundary of a set $S \subset \mathbb{C}$ with area A. Compute the integral $\int x dz$.
- 3. Compute the integral $\int_{\gamma} y dz$, where γ is
 - (a) the line segment between 0 and 2 + i,
 - (b) the semicircle |z| = 1, $\text{Im} z \ge 0$ starting from the point z = 1.
- 4. Compute the integral $\int_{\gamma} \log z dz$, where you need to select a continuous branch of the logarithm based on the given value of the logarithm at one of the points on γ :
 - (a) γ is the unit circle |z|=1 oriented counterclockwise and started at z=1, and $\log 1=0$,
 - (b) γ is the unit circle |z|=1 oriented counterclockwise and started at z=i, and $\log i = \frac{\pi i}{2}$.
- 5. Let γ be a positively oriented contour in \mathbb{C} . Use Cauchy's integral formula to compute $\int\limits_{\gamma} \frac{dz}{z^2+9}$ if
 - (a) γ surrounds the point 3i, but does not surround the point -3i,
 - (b) γ surrounds the point -3i, but does not surround the point 3i,
 - (c) γ surrounds the points 3i and -3i,
 - (d) γ surrounds neither the point 3i nor -3i.
- 6. Use Cauchy's integral formula to compute the integral $\int_{\gamma} \frac{zdz}{z^4-1}$, where γ is a positively oriented circle |z-a|=a, and a>1 is a real number.