EXERCISES, Week 1 (submit by 18.10.2017)

1. A set *B* is *elementary* if it can be expressed as a union of boxes B_1, \ldots, B_k with disjoint interia. Its measure m(B) is then defined as the sum of the measures of the boxes, i.e., $m(B) = \sum_{i=1}^{k} m(B_i)$. The *inner Jordan measure* of $S \subset \mathbb{R}^n$ is $\mu_*(S) = \sup\{m(B) : B \subseteq S, B \text{ is elementary}\}$ and the *outer Jordan measure* of S is $\mu^*(S) = \inf\{m(B) : B \supseteq S, B \text{ is elementary}\}$.

For $k \ge 0$, let $T_k = \{ [\frac{a_1}{2^k}, \frac{a_1+1}{2^k}] \times \ldots \times [\frac{a_n}{2^k}, \frac{a_n+1}{2^k}] : a_1, \ldots, a_n \in \mathbb{Z} \}$ and define $q_k(S)$ as the union of all boxes from T_k that are contained in S and $Q_k(S)$ as the union of all boxes from T_k that intersect S.

Prove that $\mu_*(S) = \lim_{k \to \infty} m(q_k(S))$ and $\mu^*(S) = \lim_{k \to \infty} m(Q_k(S))$.

[Hint: First prove that for any box B, $m(B) = \lim_{k \to \infty} m(q_k(B)) = \lim_{k \to \infty} m(Q_k(B))$. Then, prove that the same equalities hold for the measure m(B) of any elementary set B. Finally, prove the main statements.]

- 2. Let S_1, S_2 be any bounded sets in \mathbb{R}^n . Prove that
 - (a) $\mu^*(S_1 \cup S_2) \le \mu^*(S_1) + \mu^*(S_2),$ (b) if $S_1 \cap S_2 = \emptyset$, then $\mu_*(S_1 \cup S_2) \ge \mu_*(S_1) + \mu_*(S_2).$
- 3. Let S_1, S_2 be Jordan measurable sets. Prove that
 - (a) $S_1 \cup S_2$ is Jordan measurable,
 - (b) if $S_1 \cap S_2 = \emptyset$, then $\mu(S_1 \cup S_2) = \mu(S_1) + \mu(S_2)$.
- 4. Prove that any rectifiable curve in \mathbb{R}^2 (i.e., a curve with finite length) has Jordan measure 0.

[Hint: Let L be the length of the curve. First prove that for any $\varepsilon > 0$, the curve can be covered by at most $\frac{L}{\varepsilon}$ squares, each of side length 2ε . Then use subadditivity of the outer Jordan measure, see Problem 2(a).]