Prof. A. Sapozhnikov Mathematics 3 (10-PHY-BIPMA3)

EXAM SOLUTIONS, 19 February 2018, 10:00 — 12:00

1. Let S = {(z,y) : 42* + y* < 4,2 > 0}. Compute

I://xda:dy.
s

Solution. S is normal with respect to z-axis, S = {(z,y) : -2 <y <20 <z <

\/J1-— Z—Q} Thus, by Fubini’s theorem,

2 V1-2 2 q 2 4
I:/ dy/ xdx:/— 1—=)dy=-.
9 0 92 4 3

[One could instead use that S is normal with respect to y-axis or pass to generalized polar

Answer: %.

coordinates x = rcosp, y = 2rsinp, where 0 <r <1 and -5 < ¢ < %] UJ

2. Let a > 0. Let v be the circle 22 + y? = 2az. Compute

I A(y—x)ds.

Answer: —2ma?.

r=a-+acost

Y = asint , where 0 <t < 27. Then,

Solution. Parametrize v by {

2
I= / (asint —a — acost)\/(—acost)? + (asint)? dt = —2ma®.
0 A ~~ g

3. Let v be the curve y = 22 for 0 < 2 < 2. Compute

[:/ydm—xdy.
gl

Answer: —8.
Solution. By the definition of the line integral, I = f02 (231 —x32?)de =-8. [

4. Let S be the surface given by x = wcosv, y = usinv, z = v, where 0 < u < 1,
0 < v < 27. Compute

1
[://—dS.
s /14 2% +y?

Answer: 2.



Solution. We begin by computing the coefficients of the first fundamental form for
S. For that, we first compute the basis vectors of the tangent plane:

ry = (cosv,sinv,0), ry = (—usinv,ucosv,1).

Thus, E =12 =1, F=r,-7,=0,G=7r2=1+4% and VEG — F?2 = V1 +u2
We now use the definition of the surface integral:

1 1 27
]—/du v1+u2:/du/ dv = 2.
0 0

\/1 (ucosv)? + (usinwv)?

]

. Let S be the outer surface of the cube {(z,y,2) 11 <2 <21 <y<21<2 <2}
Let F'= (3, ,3). Compute I = [[( F'-dS.

Answer: —%.

Solution. Partition S into 6 rectangles (faces of the cube): S,y = {(z,y,2) : . =
L1 <y<21<2z<2} Somo={(z,9,2) :2=21<y<21<2<2}, 5y,
Syzg, Szzl and Sz:2.

First consider S,—;. The outgoing unit normal to S,—; is (—1,0,0). Thus,

I,y = //Sm:1 F-dS = //Sw:l(—l) dS = —Area(S,—;) = —1.

Next, consider S,—s. The outgoing unit normal to S,— is (1,0,0). Thus,

1 1 1
LU:Q = //Sx_Q F-dS = \/\/;S'Q:_2 5 dS = §Area(5x:2) = 5

The remaining 4 cases are symmetrical and give, respectively, —1, 3, —1, 2. Finally,

I=3(-1+1)=-3

[Alternatively one could use the Gauss-Ostrogradsky theorem.] O
. Let v be the curve on the intersection of the cone 2% + y?> = 22 and the plane

z = x+ 1 positively oriented with respect to vector (0,0,1). Let F' = (219, y? 22018).

Compute [ = va - ds.

Answer: 0.

Solution. We apply Stokes’ theorem to the surface S on the plane z = x + 1 sur-
rounded by ~. The unit normal to this surface is everywhere the same as the unit

normal to the plane, namely, (—\%,0, \/Li) or (\%,0, —\%) The orientation of

the surface positive with respect to vector (0,0, 1) corresponds to the unit normal

n= <—\/i§, 0, \%) (The inner product of this normal and (0,0, 1) is positive.)



To apply Stokes’ theorem, we also need to compute the curl of F"

T k
awlF=| £ 2 2 |=(0,192" —2018:%7,0) .
2’19 y2 x2018

In fact, we are only interested in the projection of the curl onto n: curlF -n = 0.
Thus, by Stokes’ theorem, I = [[, curlF" - ndS = 0. O

. Let f(z) = €*, z € C. Is f differentiable at 07 Give a proof.

Answer: no.

Solution. Note that f(0) =1 and for z,y € R,

1 T _ 1 1 1
lim&:hme =1, hmM:hme,—:—l.
z—0 xT z—0 €T y—0 1y y—0 Y

Thus, f is not differentiable at 0.

[One could instead show that f does not satisfy Cauchy-Riemann relations at 0.] O

. Let 7 be the circle |z — 1| = 3. Compute

1 zdz
27 sin z
¥

Answer: —m.

Solution We use the residue theorem. Note that v surrounds two singularities of
0 and 7. 0 is removable and 7 is a simple pole. Thus,

smz’

z z
I = Res,— = = —TI.
sinz  coszlz=r
O
. Find the Laurent series for the function f(z) = Z2—1+1 in0<|z—il <2
Answer: Y 7 (23))—,:;1 (z —1)".
Solution. Note that 2 = ﬁ -+ The first fraction already has the correct form,
we only need to expand the second one:
1 1 1 1 o~ (="
= — , = — Z (z —10)",
z41 22—1—(2—2) 221+Z’ 22n:0
where in the last step we used ‘ ‘ < 1. Now substitute into the first expression:
1 1 1 - )n “\ 1 - (_1) \n—1 = (_1)n+1 “\ 1
241 z—anZZO 2y 7 _nzzo(zz (z=4) _nzzl gy T

[Note: z = i is a simple pole, which agrees with the form of the found Laurent series.] []

3



10. For which values of a € R is the following PDE elliptic in the positive quadrant

11.

{z >0,y >0} of R*?
Y Uy 4 ATY Ugy + 22 1y, + % uy — 1202 1y + 21 = 0.

Answer: —2 < a < 2.

Solution. The type of second order PDE is determined only by the coefficients of the
second derivatives. A PDE is elliptic, if the determinant of the symmetric matrix
of these coefficients is positive:

1 x
= 2%y? <1 — Za2) >0 =) la| < 2.

2 1
Y Zary
1 2
Jary w

Solve the initial-boundary value problem

Up = Ugy + SINTT O<z<1,t>0
u(0,t) =u(l,t) =0 t>0
u(z,0) = sin 27z 0<z<I.

Answer: u(z,t) = % (1 - e*”%) sin a4 e~ 7 gin 27z,

Solution. We know that a solution to this problem exists and unique.

Taking into account the boundary conditions, we search for the solution in the form
of the infinite series u(x,t) =Y~ u,(t) sinmnz.

From the initial condition, the unknown functions w,(t) should satisfy
sin 27z = u(x,0) = Zun(O) sintnr <= wuy(0) =1, u,(0) =0(n # 2).
n=1

We formally substitute the expression for u in the PDE:

o)

Z (ul,(t) + (7n)? u,(t)) sinmna = sin 7z,

n=1
which corresponds to
uh (t) + g (t) = 1 —
up, (t) + (mn)*un(t) = 0 (n > 2) Un(t) = 1, (0) e” ™t (n > 2)

Thus, u(z,t) = % <1 - e‘”2t> sinmz 4+ et gin 272, A direct check gives that u

is indeed a solution. O



