5. Übung zur Vorlesung Stochastische Analysis im SoSe 2017

Aufgabe 1. Beweisen Sie Lemma 6.5. aus dem Skript.

Aufgabe 2. Berechenen Sie $E(M_1 \cdot M_2)$, wobei

$$M_t = \int_0^t \exp(B_s) dBs$$

mit B_s einer standard Brown'schen Bewegung.

Aufgabe 3. Zeigen Sie, dass jedes stetige strikt positive lokale Martingal ein exponentielles Martingal ist. (Hinweis: Ito-Formel für den Logarithmus.)

Aufgabe 4 Sei $f: G \subset \mathbb{R}^d \mapsto \mathbb{R}$ eine glatte Funktion auf einem beschränkten Gebiet $G \subset \mathbb{R}^d$, welche die Schrödinger Gleichung

$$\frac{1}{2}\Delta f = f \cdot V \text{ in } G$$

und

$$f_{|\partial G} = \varphi \text{ auf } \partial G$$

mit glatten Funktionen $V:G\mapsto\mathbb{R}$ und $\varphi:\partial G\mapsto\mathbb{R}$ löst. Zeigen Sie, dass dann für $x\in\overline{G}$

 $f(x) = \mathbb{E}\left[e^{-\int_0^{\tau} V(B_s^x)ds}\varphi(B_{\tau}^x)\right],$

wobei B^x eine Brown'sche Bewegung in \mathbb{R}^d und τ die Austrittszeit aus G bezeichnen.

Aufgabe 5 Zeigen Sie: Zwei stetige lokale Martingale M^1, M^2 auf einem gemeinsamen W-Raum sind zwei unabhängige Brown'sche Bewegungen genau dann, wenn $\langle M^i, M^2 \rangle = \delta_{ij}t$.

Aufgabe 6 Lösen sie die stochastische Differentialgleichung

$$dZ = (\alpha Z + \alpha' Z)dt + (\sigma Z + \sigma')dW$$

mit dem Ansatz $H = \frac{Z}{S}$, wobei S Lösung einer Black-Scholes Differentialgleichung ist.