Finanzmathematik im SoSe 2018 Prof. Dr. M. v. Renesse 4. Übung

May 28, 2018

- 1. Es sei (Ω, \mathcal{F}, P) ein Wahrscheinlichkeitsraum $\mathcal{G} \subset \mathcal{F}$ eine Unter- σ -Algebra von \mathcal{F} . Zeigen Sie, dass $L^2(\Omega, \mathcal{G}, P)$ ein abgeschlossener Unterraum des Hilbertraumes $L^2(\Omega, \mathcal{F}, P)$ ist, und beweisen Sie durch Anwendung des Projektionssatzes in Hilberträumen die Existenz von $E_P(X|\mathcal{G})$ für $X \in L^2(\Omega, \mathcal{F}, P)$.
- 2. Zeigen Sie in der Situation von Aufgabe 1 durch Anwendung eines geeigneten Abschneide-Argumentes, dass $E_P(X|\mathcal{G})$ auch für integrierbares X existiert. (Gehen Sie dabei zunächst davon aus, dass $X \geq 0$
- 3. Geben Sie einen Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) zur Beschreibung der dreifachen unabhängigen Wiederholung eines Münzwurfes mit Erfolgswahrscheinlichkeit $p=\frac{1}{3}$ an. Es bezeichnen $X_1, X_2, X_3: \Omega \mapsto \{0,1\}$ jeweils die Zufallsvariablen für Erfolg in den drei Durchgängen und $Z:=(X_1+X_2)X_3$. Bestimmen Sie die beiden bedingten Erwartungswerte $Y_i:=E_P(Z|\mathcal{F}_i)$, wobei $\mathcal{F}_1:=\sigma(X_1)$ und $\mathcal{F}_2=\sigma(X_1,X_2)$ die von X_1 bzw. X_1 und X_2 erzeugten Sigma-Algebren auf Ω sind.

Uberprüfen Sie (entsprechend dem 'Faktorisierungslemma' für messbare Abbildungen) in beiden Fällen, dass sich Y_i als Funktion von X_1 bzw. von X_1 und X_2 darstellen lässt.

4. Es sei X_1, X_2, X_3 unabhängige identisch verteilte Zufallsvariablen auf einem Wahrscheinlichkeitsraum (Ω, \mathcal{F}, P) mit $P(X_i = 1) = p$ und $P(X_i) = 1 - p$ mit einem $p \in [0,1]$. Es bezeichne $\{\mathcal{F}_i\}_{i=0,1,2,3}$ die vom Prozess X_{\bullet} auf Ω erzeugte Filtrierung, wobei $\mathcal{F}_0 := \{\emptyset, \Omega\}$ als triviale σ -Algebra gewählt wird. Zeigen Sie, dass $S_k := \sum_{i=1}^k X_i$, $S_0 := 0$, ein \mathcal{F}_{\bullet} -Martingal unter P ist genau dann, wenn $p = \frac{1}{2}$.