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1. Introduction

Conformal transformations and conformal vector fields are important concepts
in both Riemannian and pseudo-Riemannian geometry. Liouville’s theorem made
clear already in the 19th century that in dimensions n ≥ 3 conformal mappings are
more rigid than in dimension 2. Conformally flat spaces have been characterized
by Cotton, Finzi and Schouten in the early 20th century. In General Relativity
conformal transformations are important since they preserve the causal structure
up to time orientation and light-like geodesics up to parametrization. Already in
the early days of Einstein’s relativity theory, Kasner studied the question whether
two fields both obeying Einstein’s equations of gravitation can ever have the same
light rays. Motivated by this question about light rays, Kasner [Ks21a] proved
the following: When a conformal representation of an Einstein manifold on a flat
space is possible, the manifold is isometric to flat space. In modern terminology
this is the statement that a vacuum spacetime which is locally conformally flat
must be flat. Brinkmann [Br’25] investigated conformal transformations between
two Einstein spaces as well as conditions for a space to be conformal to an Einstein
space. He solved the differential equation ∇2f = (∆f/n) · g on Riemannian and
pseudo-Riemannian manifolds of arbitrary dimension and – as a by-product – found
those metrics which were later called pp-waves. For global conformal geometry, the
conformal development map was introduced by Kuiper [Ku’49] in 1949. Using this
concept he proved that a compact and simply connected Riemannian manifold
which is locally conformally flat must be globally conformally equivalent with the
standard sphere, see Section 3. Similarly, in the pseudo-Riemannian case a simply
connected and locally conformally flat space admits a conformal development map
into the quadric Q which is the conformal compactification of pseudo-Euclidean
space.

Conformal vector fields can be considered as a natural generalization of Killing
vector fields. They are also called conformal Killing fields or infinitesimal confor-
mal transformations. Those which become Killing after some conformal change
of the metric are considered as inessential. Essential conformal vector fields on
Riemannian spaces have been studied by Obata, Lelong-Ferrand and Alekseevskii
[Al’72], [La’88], their results are given in Section 4. Conformal gradient fields
are essentially solutions of the differential equation ∇2f = (∆f/n) · g . After
Brinkmann this equation has been investigated by Fialkow, Yano, Obata, Kerbrat
and others, these results are presented in Section 5 and Section 7. For Rieman-
nian manifolds the theorem of Obata-Ferrand states that a compact Riemannian
manifold carrying an essential conformal vector field must be locally conformally
flat and, therefore, is conformally equivalent with the standard sphere. In pseudo-
Riemannian geometry any conformal vector field V induces a conservation law for
lightlike geodesics since the quantity g(V, γ′) is constant along such a geodesic γ.
Therefore, a classification of pseudo-Riemannian metrics admitting a conformal
vector field is a challenge. In the pseudo-Riemannian case the authors started in
[KR95] and [KR97b] a systematic approach to the structure of conformal gradient
fields with isolated singularities including a conformal classification theorem which
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we present in Section 7. The ultimate pseudo-Riemannian analogue of the Obata-
Ferrand theorem seems still to be missing, compare [Fs’05]. Already Brinkmann
investigated the question which manifolds are conformal to an Einstein metric. In
section 6 we give tensorial conditions for metrics to be conformally Einstein in par-
ticular following Listing [Li’01] as well as Gover and Nurowski [GN’06]. Conformal
symmetries of four-dimensional spacetimes were investigated by Hall and others,
cf. for example [Hl’04]. Among the four-dimensional spacetimes, which we discuss
in section 8, the pp-waves play a special role. In the vacuum case they are the
only ones admitting non-homothetic conformal vector fields. Plane waves occur as
the so-called Penrose limit of arbitrary spacetimes. We review this construction in
section 9. Introduced by Penrose [Pe’76] in 1976 the Penrose limit recently gained
much attention in papers investigating background metrics for models in super-
gravity and string theory, cf. for example papers by Blau, Figueroa-O’Farrill et al.
[BF’02] [BP’04]. One can introduce twistor spinors as solutions of a conformally
covariant field equation and they come with an associated conformal vector field
called the Dirac current. Twistor spinors can be seen as conformal extension of the
concept of parallel and Killing spinors. We review shortly results by the authors in
the Riemannian case in Section 10 before discussing results about twistor spinors
and their Dirac currents in the Lorentzian setting which are mainly due to Baum
and Leitner [BL’04].

2. Basic concepts

We consider a pseudo-Riemannian manifold (M, g), which is defined as a smooth
manifold M (here smooth means of class C∞) together with a pseudo-Riemannian
metric of arbitrary signature (k, n − k), 0 ≤ k ≤ n. A conformal mapping be-
tween two pseudo-Riemannian manifolds (M, g), (N, h) is a smooth mapping F :
(M, g) → (N, h) with the property F ∗h = α2 g for a smooth positive function
α : M → R

+. In more detail this means that the equation

hF (x) (dFx(X), dFx(Y )) = α2(x)gx (X,Y )

holds for all tangent vectors X,Y ∈ TxM. Particular cases are homotheties resp.
dilatations, for which α = const is constant and isometries, for which α = 1.

A (local) one-parameter group Φt of conformal mappings generates a conformal
(Killing) vector field V , sometimes also called an infinitesimal conformal transfor-
mation, by V = ∂

∂t
Φt. Vice versa, any conformal vector field generates a local

one-parameter group of conformal mappings. In terms of derivatives of tensors
this is expressed as follows:

Definition 2.1. A vector field V is called conformal if and only if the Lie derivative
LV g of the metric g in direction of the vector field V satisfies the equation

LV g = 2σg
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for a certain smooth function σ : M → R. The Lie derivative of the metric in
direction of a vector field V is defined as the symmetrization of the derivative ∇V
as follows: For any given tangent vectors X,Y ∈ TxM the equation

LV gx(X,Y ) = gx (∇XV, Y ) + gx (X,∇Y V ) = 2σ(x)gx(X,Y ) (1)

holds. Here ∇ denotes the Levi-Civita connection of the pseudo-Riemannian man-
ifold (M, g). For computing the trace let (e1, e2, . . . , en) be an orthonormal basis
with g(ei, ej) = ǫiδij , where ǫ1 = . . . = ǫk = −1 and ǫk+1 = . . . = ǫn = 1; δij = 0
for i 6= j and δii = 1. Then we have the divergence

2 divV = 2

n
∑

i=1

ǫig (∇ei
V, ei) =

n
∑

i=1

ǫiLV g(ei, ei) = 2nσ

i.e. σ = divV/n . Particular cases of conformal vector fields are homothetic vector
fields for which σ = const and isometric vector fields, also called Killing vector fields,
for which σ = 0.

Proposition 2.2. The image of a lightlike geodesic under any conformal mapping
is again a lightlike geodesic.

Furthermore, for any lightlike geodesic γ and any conformal vector field V the
quantity g(γ′, V ) is constant along γ.

Proof. The first statement follows from the following equation for the Levi-Civita
connections ∇,∇ of two conformally equivalent metrics g, g = ϕ−2 g:

∇XY −∇XY = −X(logϕ)Y − Y (logϕ)X + g(X,Y )grad(logϕ).

The second statement follows from

γ′g(γ′, V ) = g(∇γ′V, γ′) =
1

2
LV g(γ′, γ′) = σg(γ′, γ′) = 0.

Conformal vector fields V with non-vanishing g(V, V ) can be made into Killing
fields within the same conformal class of metrics.

Lemma 2.3. If V is a conformal vector field on the pseudo-Riemannian manifold
(M, g) for which the function g(V, V ) does not have a zero, then the vector field V
is an isometric vector field for the conformally equivalent metric g = |g(V, V )|−1 g .
This is a special case of a so-called inessential conformal vector field.

Proof. Let α = g(V, V )−1 and η = sign g(V, V ) ∈ {±1}, then V (α) =
−V (g(V, V ))α2 = −2g(∇V V, V )α2 = −LV g(V, V )α2 = −2σα . We conclude from
LV g = 2σg :

LV g(X,Y ) = ηLV (αg)(X,Y ) = η (V (α)g(X,Y ) + αLV g(X,Y )) = 0

Hence V is an isometric vector field for the metric g .
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Definition 2.4. We call a vector field V on a pseudo-Riemannian manifold closed
if it is locally a gradient field, i.e., if locally there exists a function f such that
V = gradf Consequently, from Equation 3 we see that a closed vector field V is
conformal if and only

∇XV = σX (2)

for all X or, equivalently ∇2f = σg where ∇2 denotes the Hessian (0, 2)-tensor,
i.e. ∇2f(X,Y ) = g (∇Xgradf, Y ) .

In terms of 1-forms which are dual to vector fields this is nothing but the usual
condition of closedness in terms of the exterior derivative: Let ω be the 1-form dual
to the vector field V with respect to the metric g, i.e. ω(X) = g(V,X). Then the
exterior derivative dω equals the skew-symmetrization of the covariant derivative
∇V , i.e.

dω(X,Y ) = g (∇XV, Y ) − g (X,∇Y V )

From 2 g(∇XV, Y ) = LV g(X,Y )+dω(X,Y ) we obtain for a conformal vector field
V with LV g = 2σg the equation

g(∇XV, Y ) = σg(X,Y ) + dω(X,Y ) . (3)

Accordingly, if g = αg and if ω is the one-form dual to V with respect to g then
dω = d(αω) = dα ∧ ω + αdω . Therefore a vector field V for which the dual one-
form ω satisfies dω = η ∧ ω for some one-form η is also called conformally closed,
cf. [KR97b].

Lemma 2.5. Let V be a closed conformal vector field of the pseudo-Riemannian
manifold (M, g) for which g(V, V ) does not vanish. Then the vector field V is a par-
allel vector field of the conformally equivalent metric g = αg, with α = |g(V, V )|−1.

Further notions: A vector field is called complete if the flow is globally defined
as a 1-parameter group of diffeomorphisms Φ: R×M →M . In the particular case
of a gradient field V = grad f we have LV g = 2∇2f , hence grad f is
conformal if and only if ∇2f = σ · g where n · σ = ∆f = div (grad f)
is the Laplacian. If the symbol ( )◦ denotes the traceless part of a (0, 2)-
tensor, then grad f is conformal if and only if (∇2f)◦ ≡ 0 . This equation
(∇2f)◦ = 0 allows explicit solutions in many cases, for Riemannian as well as for
pseudo-Riemannian manifolds, see the discussion in Section 7 below. A vector field
V is called concircular if the local flow (Φt) consists of concircular mappings, i.e.
conformal mappings preserving geodesic circles. A transformation of the metric
g 7→ ḡ = 1

ψ2 g is concircular if and only if (∇2ψ)◦ = 0 , see [Ta’65], equivalently if

Ric◦ḡ = Ric◦g, see [KR95a].

We introduce some notation: As usual,

R(X,Y )Z = ∇X∇Y Z −∇Y∇XY −∇[X,Y ]Z (4)

denotes the (Riemann) curvature (1, 3)-tensor. Then the Ricci tensor as a symmet-
ric (0, 2)-tensor is defined by the equation Ric(X,Y ) = trace {V 7→ R(V,X)Y } .
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The associated (1, 1) tensor is denoted by ric where Ric(X,Y ) = g (ric(X), Y ) .
Then S = trace {V 7→ ric(V )} is the scalar curvature. Then the Schouten tensor P
(as a (0, 2)-tensor) is defined by

P =
1

n− 2

(

S

2(n− 1)
g − Ric

)

.

The Kulkarni Nomizu product g ∗ h of symmetric (0, 2)-tensors g, h :

g ∗ h(X,Y, Z, T ) := g(X,T )h(Y, Z) + g(Y, Z)h(X,T )

−g(X,Z)h(Y, T )− g(Y, T )h(X,Z)

is a (0, 4)-tensor with the algebraic symmetry properties of the curvature tensor.
The Weyl tensor (also called conformal curvature tensor) is defined by the equa-

tion (cf. [Be’87, ch.1G])
R = g ∗ P +W . (5)

The Weyl tensor is the totally tracefree part of the Riemannian curvature tensor.
In dimension n ≥ 4 the Weyl tensor vanishes if and only if the manifold is con-
formally flat. A manifold is conformally flat, if every point has a neighborhood
which is conformally equivalent to an open subset of pseudo-Euclidean space. If
h is a symmetric (0, 2)-tensor, then the exterior derivative dh equals the skew-
symmetrization of the covariant derivative ∇h, i.e.

dh(X,Y, Z) := (∇Xh)(Y, Z) − (∇Y )h(X,Z).

In dimension n = 3 W vanishes identically. To detect conformal flatness also in
dimension n = 3 one introduces the (1, 2)–Cotton tensor C = dP. Then we have
in dimension 3 that C vanishes if and only if the manifold is conformally flat. Let
F be a (0, 4)-tensor with the symmetries of the curvature operator, then we define
the divergence divrF ; 1 ≤ r ≤ 4

divrF (X1, X2, X3) := trace {(V,W ) 7→ ∇V F (X1, . . . , Xr−1,W,Xr+1, . . . , X3)}
(6)

In particular we write div = div4. The second Bianchi identitiy implies the follow-
ing relations, cf. [Be’87, (16.D)]:

divR = dRic ; divW = (n− 3) dP = (n− 3)C . (7)

Notation: Throughout this paper we also use the notation 〈X,Y 〉 instead of
g(X,Y ) if there is no danger of confusion which metric tensor g is referred to.

3. Flat and conformally flat spaces

Conformal geometry was first studied for the flat Euclidean space and its pseudo-
Euclidean analogue, compare Liouville’s theorem from 1850. In the case of Eu-
clidean space E

n there are the following key examples of complete conformal vector
fields
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1. the radial vector field V1(x) = x,

2. the constant vector field V2(x) = x0.

The corresponding 1-parameter groups of conformal diffeomorphisms are

1. Φ
(1)
t (x) = et · x,

2. Φ
(2)
t (x) = x+ t · x0,

respectively. On the conformal compactification Sn = E
n ∪ {∞} with the standard

conformal structure these two vector fields are essential meaning that they are not
isometric with respect to any conformally equivalent metric. V1 has two zeros
at 0,∞. It is the gradient of a globally defined function on the sphere whereas
V2 is not a gradient and has only one zero at ∞. The standard metric on Sn

is characterized by the existence of a conformal gradient field gradϕ such that
∇2
gϕ+ c2ϕ · g = 0, see [Ta’65], [Ob’62] and Section 7 below. Any simply connected

and conformally flat Riemannian manifold M of dimension n admits a conformal
immersion δ : M → Sn, see below. Vice versa, for getting examples of conformally
flat spaces one can take the preimage under δ of any open subset A ⊂ Sn or
its universal covering. This includes the example R × Hn−1 as the covering of
Sn \ Sn−2, called a Mercator-manifold in [KP’94].

We denote by E
n
k the pseudo-Euclidean space with the metric g = −

∑

i≤k dx
2
i +

∑

i>k dx
2
i . A pseudo-Riemannian manifold of the same signature is called (locally)

conformally flat if it is locally conformally equivalent to E
n
k .

Lemma 3.1. (Brinkmann [Br’23]):

For any conformally flat pseudo-Riemannian manifold (Mn
k , g) there exists lo-

cally an isometric immersion into E
n+2
k+1 .

Proof: Locally the metric has the form ϕ2(−∑i≤k dx
2
i +

∑

i>k dx
2
i ) where

x1, . . . , xn are cartesian coordinates and ϕ 6= 0 is a scalar function. Let 〈x, x〉
denote the pseudo-Euclidean scalar product of the point x = (x1, . . . , xn). We
define the following mapping

x 7→ y = (y0, . . . , yn+1) :=
(

ϕ
2

(

〈x, x〉 + 1
)

, ϕx1, . . . , ϕxn,
ϕ
2

(

〈x, x〉 − 1
)

)

.

Then the following conditions are easily checked:

1. (y0, . . . , yn+1) 6= (0, . . . , 0),

2. y lies in the null cone {y | 〈y, y〉 = 0},

3. the induced metric of this immersion is

−∑i≤k dy
2
i +

∑

i>k dy
2
i = ϕ2

(

−∑i≤k dx
2
i +

∑

i>k dx
2
i

)

.
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The sphere inversion appears essentially as the mapping yn+1 7→ −yn+1. Note
that the Riemannian case k = 0 is included; in this case the image does not meet
the hyperplane y0 = 0. However, the ambient space is E

n+2
1 .

With respect to the pseudo-Euclidean metric, the mapping x 7→ y is confor-
mal in any case, independent of ϕ. This motivates the following definition of a
conformal development map into the real projective space RPn+1.

Definition 3.2. ([Ku’49], see also [AD’89]) The conformal development map on
a conformally flat pseudo-Riemannian manifold (Mn

k , g) is defined locally by x 7→
y 7→ [y0, . . . , yn+1] ∈ RPn+1.

If M is simply connected this induces a conformal immersion δ : M → Qnk ⊂
RPn+1, the conformal development. Here Qnk denotes the projective quadric
{y | 〈y, y〉 = 0}. Qnk can also be regarded as the conformal compactification of
E
n
k . One observes that δ(Enk ) = {[y0, y, yn+1] ∈ Q | yn+1 6= y0} where the equa-

tion {yn+1 = y0} describes the ‘points at infinity’. The quadric Qnk is diffeomor-
phic with {〈y, y〉 = 0} ∩ Sn+1 ∼= Sk × Sn−k modulo the identification of antipo-
dal pairs of points. Topologically, Qnk can also be regarded as a sphere bundle
over RP k if k ≤ n − k cf. [CK’82], a Euclidean model is the tensor product
Sk ⊗ Sn−k ⊂ R

(k+1)(n−k+1). In the special case of Minkowski 4-space R
4
1 the Lie

group U(2) can be considered as the conformal compactification of u(2) via the
Cayley map δ : u(2) → U(2), δ(x) = (1 + x)(1 − x)−1, see [BP’85].

Lemma 3.3. The conformal transformations of the projective quadric Qnk are in
1-1-correspondence with those projective transformations of RPn+1 preserving Qnk .

This lemma is essentially due to Möbius for the classical case k = 0, n = 2
(compare the Möbius geometry). For arbitrary dimensions it is stated in [Ku’49].

Theorem 3.4. (Kuiper [Ku’49]):
If M is simply connected and conformally flat then δ : M → Qnk is globally

defined. If moreover M is compact then δ is either a diffeomorphism between M
and Sn (if k = 0) or a two-fold covering (if 2 ≤ k ≤ n−2). For k = 1 or k = n−1
the universal covering is non-compact.

A conformally flat manifold M is called developable if the conformal develop-
ment map δ is globally defined. Any simply connected conformally flat manifold
is developable.

Examples The key examples of conformal vector fields on pseudo-Euclidean
space are again the vector fields V1 and V2 above, extended to Qnk by taking limits
of the flow.

The fixed points of the flow Φ
(1)
t are the two isolated points [1, 0,−1] (the

origin) and [1, 0, 1] (its image under the inversion at the unit sphere) and the null
cone at infinity {0} ×Qn−2

k−1 × {0}.
The fixed point set of Φ

(2)
t depends on the type of the translation vector x0: If

〈x0, x0〉 6= 0 then the only fixed point is [1, 0, 1] = ∞. This is a perfect analogue
of the conformal flow on the standard sphere with one fixed point. If 〈x0, x0〉 = 0
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this is different. In this case let I denote the conformal inversion I(x) = x
|x|2 . Then

the conjugation I ◦ Φ
(2)
t ◦ I of the 1-parameter group Φ

(2)
t leads to the vector field

V3(x) = d
dt
|t=0

(

I ◦Φ
(2)
t ◦ I

)

= −2〈x, x0〉x+ 〈x, x〉x0. This is a third type where the
gradient of the conformal factor σ satisfying LV3

g = 2σg is a parallel and isotropic
vector. The fixed point set is one isotropic line in the null cone. The flat metric
of Minkowski 4-space in coordinates (u, v, x, y) can be written as g = −2dudv +
dx2 + dy2. If we choose especially the isotropic translational vector x0 = 1

2∂v then
this vector field V3 takes the form V3(u, v, x, y) =

(

u2, 1
2 (x2 + y2), ux, uy

)

. This is
the standard type of a so-called special conformal vector field, see Section 8.

Corollary 3.5. On the conformal compactification Qnk there exists a conformal
vector field V 2 with one zero, and on Qnk \ Qn−2

k−1 there exists a conformal vector

field V 1 with two zeros. These vector fields are essential and complete. V 1 is a
local gradient field, V 2 is not a gradient field near the zero.

Qnk \Qn−2
k−1 is nothing but the union of δ(En) and its image under inversion at

the ‘unit sphere’. This inversion transforms V 1 into −V 1. This space Qnk \Qn−2
k−1 is

not simply connected. In fact, its fundamental group is isomorphic to the integers
Z if 2 ≤ k ≤ n − 2, leading to a Z-sheeted universal covering which carries a
conformal vector field with infinitely many zeros.

Corollary 3.6. [KR95]

For 2 ≤ k ≤ n−2 the universal covering of Qnk \Qn−2
k−1 defines a manifold M(Z)

together with a conformal structure such that δ : M(Z) → Qnk \ Qn−2
k−1 becomes a

conformal covering. The conformal vector field V 1 can be lifted to a vector field

V
(Z)
1 with infinitely many zeros. These zeros are in natural bijection to (2Z)∪(2Z+

1) ∼= Z. Similarly, there are intermediate coverings with any even number of zeros
of the vector field.

For 2 ≤ k ≤ n−2 the universal covering of the quadricQnk itself is diffeomorphic
to Sk×Sn−k. The metric can be chosen as the product of two metrics of constant

curvature with opposite signs. This space carries a conformal vector field V
(2)
2 with

two zeros as the lift of V 2 via the conformal covering δ : Sk × Sn−k → Qnk . Even
if we remove one of the zeros, the vector field is still complete. The punctured
Sk × Sn−k carries a complete conformal vector field with one zero.

In a neighborhood of a zero of a conformal gradient field the metric is confor-
mally flat, see Section 7.

4. The Riemannian case

In the case of a Riemannian manifold any conformal vector field without zeros can
be made into an isometric vector field by a conformal change, see Lemma 2.1. Such
a field is called inessential, otherwise it is essential. Since much is known about the
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isometry groups and Killing fields, it is here more interesting to study essential con-
formal vector fields, that is, conformal vector fields which never become isometric
under a global conformal change of the metric.

Theorem 4.1. (Essential conformal vector fields)

1. (Alekseevskii [Al’72], Ferrand [Fe’77],[Fe’96], Yoshimatsu [Yo’76])
Assume that (M, g) is a Riemannian manifold of dimension n admitting a
complete and essential conformal vector field. Then (M, g) is conformally
diffeomorphic with either the standard sphere Sn or with the Euclidean space
E
n.

2. (Obata [Ob’71], Lelong-Ferrand [LF’71], Lafontaine [La’88])
Assume that (M, g) is a compact Riemannian manifold of dimension n ad-
mitting an essential conformal vector field. Then (M, g) is conformally dif-
feomorphic with the standard sphere Sn.

Three key steps in the proof are the following:

1. The zeros of the vector field are isolated.

2. In a neighborhood of a zero the manifold is conformally flat.

3. The conformal development map δ : M → Sn is injective.

Several steps in the proof were made more precise in various papers, so the result
cannot really be attributed to a single person, compare [Gu’95]. The case of a
complete manifold carrying a complete and closed essential conformal vector field
was solved by Bourguignon [Bo’70]. No analogous result seems to be known yet
in the case of a pseudo-Riemannian manifold with an indefinite metric. It is a
conjecture that a compact and pseudo-Riemannian manifold carrying an essential
conformal vector field is conformally flat, it is named Lichnerowicz’ conjecture
in [Fs’05].

The situation with respect to inessential conformal vector fields is totally dif-
ferent, even in the compact case and even under additional curvature restrictions.

Example 4.2. [Ej’81] For any n there is a compact Riemannian n-manifold of
constant scalar curvature admitting a conformal vector field without zeros.

The simplest example of this kind for n = 4 is the product S1 × S3 with the
warped product metric g = dt2 + (2 + cos t)g1 where g1 is the standard metric on
the unit sphere. In this case the vector field V =

√
2 + cos t ∂t is conformal (and

inessential), see [De’80, p.277]. There are similar examples g = dt2 + (f(t))2g∗ in
any dimension, with a periodic warping function f which can be explicitly given.
It has to satisfy the ODE nρf2 + (n − 2)f ′2 + 2ff ′′ = (n − 2)ρ∗ where ρ, ρ∗ are
the constant (normalized) scalar curvatures of g, g∗, respectively. These examples
can be extended to the case of a pseudo-Riemannian metric, see [KR97a].
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5. Conformal Transformations of Einstein Spaces

Definition 5.1. A pseudo-Riemannian manifold of dimension n ≥ 3 is called an
Einstein space if the Ricci tensor is a (necessarily constant) multiple of the metric
tensor. In this case the metric is called an Einstein metric, and in the equation

Ric = λg

the factor λ is called the Einstein constant. Hence λ = S/n where S is the scalar
curvature.

In general relativity the case λ = 0 is precisely the case where the Einstein
field equations hold for the vacuum. 4-dimensional Einstein spacetimes with non-
vanishing Einstein constants are the de Sitter space and the anti-de Sitter space.
Kasner started in the early 20s [Ks21a, Ks21b] an investigation about conformal
changes of Ricci flat metrics. In more generality, one can ask what happens to
Einstein metrics under conformal change.

Lemma 5.2. The following formulae hold for any conformal change g 7→ g =
ϕ−2g:

Ricg − Ricg = ϕ−2
(

(n− 2) · ϕ · ∇2ϕ+
[

ϕ · ∆ϕ− (n− 1) · ||∇ϕ||2
]

· g
)

. (8)

Moreover, if V is a conformal vector field with LV g = 2σg then the formula

LV Ric = −(n− 2)∇2σ − ∆σ · g (9)

holds and the following conditions are eqivalent:

1. LVRic = θg for a certain function θ

2. grad(divV ) is conformal

3. (∇2σ)◦ = 0

The first equation follows from the relationship between the two Levi-Civita
connections ∇,∇ associated with g and g:

∇XY −∇XY = −X(logϕ)Y − Y (logϕ)X + g(X,Y )grad(logϕ).

Corollary 5.3. The Einstein property of a metric is in general not preserved under
conformal changes. If g is an Einstein metric then the conformally transformed
metric g = ϕ−2g is Einstein if and only if

(∇2ϕ)◦ = 0,

that is, if the Hessian of ϕ is a scalar multiple of the metric tensor.
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This equation was already analyzed by Brinkmann [Br’24],[Br’25] in the 1920s.
He was the first who proved that in the case g(gradϕ, gradϕ) 6= 0 the metric g is
a warped product. Furthermore, he proved that in the case g(gradϕ, gradϕ) = 0
the metric has a specific form carrying a parallel isotropic vector field (now called
a Brinkmann space) which in dimension four became later important in physics as
a pp-wave, compare [Si’74]. For solutions of the equation (∇2ϕ)◦ = 0 see Section
7 below.

Corollary 5.4. Assume that an Einstein space carries a conformal vector field V
which is not homothetic or isometric. Then it carries also a conformal gradient
field, namely, the gradient of divV . This gradient field does not vanish identically
but it can happen that it is a parallel isotropic vector field, hence isometric.

Theorem 5.5. (Brinkmann [Br’25])
Assume that (M, g) is an Einstein space of dimension n ≥ 3 admitting a non-

constant solution f of the equation (∇2f)◦ = 0. Then the following hold:

(a) Then around any point p with g(gradf(p), gradf(p)) 6= 0 the metric tensor
is a warped product g = ηdt2 + (f ′(t))2g∗ where gradf = f ′ ∂

∂t
, η = ±1

and where the (n− 1)-dimensional Einstein metric g∗ does not depend on t.
Moreover, f satisfies the ODE f ′′ + ρηf = 0 where ρ denotes the normalized
Einstein constant (such that ρ = 1 on the unit sphere in any dimension).

(b) Furthermore, if g(gradf, gradf) = 0 on an open subset then gradf is a paral-
lel isotropic vector field on that subset, and the metric tensor can be brought
into the form g = dudv + g∗(u) where gradf = ∂

∂u
= gradv and where the

(n − 2)-dimensional metric g∗(u) is Ricci flat for any fixed u and does not
depend on v. Consequently g itself must be Ricci flat. These coordinates
u, v, xi; i = 1, 2, . . . , n− 2 are sometimes called Rosen coordinates.

Corollary 5.6. In dimension n = 4 any Einstein space is of constant sectional
curvature if it admits either a non-trivial conformal mapping onto some other
Einstein space or if it admits a non-homothetic conformal vector field V such that
grad(divV ) is not parallel and isotropic. For a Riemannian 4-manifold the latter
case cannot occur, and for a Lorentzian 4-manifold the latter case is the case of a
Ricci flat pp-wave (or vacuum pp-wave).

This result is due to Brinkmann [Br’25], compare also [GT’87]. See Section 8
below for a further discussion of the 4-dimensional Lorentzian case.

Theorem 5.7. (Yano and Nagano [YN’59])
Assume that a compact Riemannian Einstein space admits a non-homothetic

conformal vector field. Then it is conformally diffeomorphic with the standard
sphere.

This follows essentially from Theorem 7.7 since on a compact space the gradient
of the divergence must have a critical point. Then by Theorem 3.4 the manifold is
a quotient of the standard sphere. The case of a covering can be easily excluded,
so only the sphere itself is possible. In a similar way one obtains the following.
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Theorem 5.8. (Kanai [Ka’83])
Assume that a complete Riemannian Einstein space admits a non-homothetic

conformal vector field V with a critical point of divV . Then it is of constant
sectional curvature.

Without any assumption on critical points or zeros of the vector fields, there
are counterexamples in form of warped products dt2 + (cosh t)2g∗ where g∗ is
Einstein with ρ∗ = −1 but not of constant sectional curvature, a fact implicitly
contained in [Br’25]. compare [BK’78]. The case of a single conformal mapping
into some Einstein space which is defined on a complete Einstein space is classified
in [Kü’88, Thm.27]. Here the case of a warped product g = dt2 + e2tg∗ comes in
with a complete and Ricci flat metric g∗.

Conformal vector fields on Riemannian Einstein spaces were classified by Kanai
[Ka’83]. A pseudo-Riemannian analogue is more complicated since it has to include
the case of pp-waves and generalizations, compare [Kc’91] and [KR97a]1.

The case of pseudo-Riemannian spaces of constant scalar curvature carrying
non-isometric local gradient fields can also be classified, see [KR97a, Thm.4.3].
Here we obtain generalizations of Ejiri’s example at the end of Section 4, all as
warped product metrics. The possible warping functions can be explicitly deter-
mined.

6. Spaces which are conformally Einstein

We call a pseudo-Riemannian manifold (M, g) conformally Einstein if every point p
has an open neighborhood U such that the conformally equivalent metric (U, g =
λ2g) for some function λ : U → R is an Einstein metric. As a direct consequence
of Lemma 5.2 we obtain the following:

Proposition 6.1. An n-dimensional pseudo-Riemannian manifold (M, g) admits
a conformal mapping onto an Einstein space (M, g) with g = ϕ−2g if and only if
the factor ϕ satisfies the following equation

ϕ · Ric◦ + (n− 2)
(

∇2ϕ
)◦

= 0 (10)

It seems that Brinkmann [Br’24] was the first who discussed this equation,
which is also called conformal Einstein equation . Its integration is surprisingly
difficult. In dimension 2 the equation is trivial. In higher dimensions the equation
implies that the eigenspaces of ∇2ϕ must coincide with the given eigenspaces of
Ric. Furthermore the eigenvalues of ∇2ϕ are determined by the eigenvalues of Ric
and by ϕ itself.

We rewrite this equation for the function φ = logϕ using the following

1In Theorem 3.2 of this paper the proof has a gap, as kindly pointed out to the authors by

Helga Baum. So possibly one case in the classification there was missing.
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Definition 6.2. For a vector field V on a pseudo-Riemannian manifold we define
the Schwarzian tensor as the following traceless (0, 2) tensor:

FV (X,Y ) := g(∇XV, Y ) + g(X,V )g(Y, V ) − 1

n

{

divV + ‖V ‖2
}

g(X,Y ) . (11)

Then one can rewrite the conformal Einstein equations with the help of the
Schwarzian tensor as follows, see [Li’01]:

Proposition 6.3. An n-dimensional pseudo-Riemannian manifold (M, g) admits
a conformal mapping onto an Einstein space (M, g) with g = exp(−2φ)g if and
only if the factor φ satisfies the following equation

Ric◦ = −(n− 2)Fgradφ (12)

It is an important question treated by many authors to characterize confor-
mally Einstein manifolds by tensorial equations. In dimension four the Bach equa-
tion [Ba’21] is only a necessary condition, there are Bach flat spaces which are
not conformally Einstein, cf. [NP’01]. Tensorial conditions in dimension 4 for
certain classes of metrics are discussed for example in Szekeres [Sz’63], Kozameh,
Newman and Tod [KN’85]. Extensions to arbirtrary dimensions are due to List-
ing [Li’01],[Li’06], Gover and Nurowski [GN’06]. Under a suitable non-degeneracy
assumption for the Weyl curvature we present tensorial equations providing nec-
essary and sufficient conditions for the metric to be conformally Einstein follow-
ing [Li’01] and [GN’06].

A pseudo-Riemannian manifold (M, g) of dimension n ≥ 4 has an harmonic
Weyl tensor (or is called a C-space) if the divergence of the Weyl tensor vanishes,
i.e. divW = 0.

Proposition 6.4. A pseudo-Riemannian Einstein manifold of dimension n ≥ 4
has an harmonic Weyl tensor.

Proof. Since Ric = (S/n)g and since the scalar curvature is constant the Schouten
tensor P is parallel, therefore the Cotton tensorC = dP as the skew-symmetrization
of ∇P vanishes. We conclude from Equation 7 that divW = 0.

Let g = ϕ−2g be a conformally equivalent metric and let ϕ = exp(φ) and denote
by W, divW the Weyl tensor resp. its divergence with respect to the metric g.
Then the conformal behaviour of the divergence of the Weyl tensor is given by the
following equation, cf. [Li’01, Lem.1].

(

div W
)

(X,Y, Z) = (divW ) (X,Y, Z) + (3 − n)W (X,Y, Z, gradφ) (13)

If now g = exp(−2φ) g is an Einstein metric we conclude from Proposition 6.4
that

div4W (., ., .) + (3 − n)W (., ., ., gradφ) = 0 . (14)

Let (E1, E2, . . . , En) be a pseudo-orthonormal frame with g(Ei, Ej) = ǫiδij and
ǫi ∈ {±1}. For a (0, 2)-tensor h we denote by W [h] the following (0, 2) tensor:

W [h](X,Y ) =
∑

i,j

ǫiǫjW (Ei, X, Y,Ej)h(Ej , Ei)
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If we take the divergence div1 with respect to the first argument of Equation 14
we obtain:

div1div4W + (3 − n)W [∇2φ] − (n− 3)2W [dφ⊗ dφ] = 0

Since for any function f we have W [f g] = 0 we conclude from the conformal
Einstein equation 12

div1div4W +
n− 3

n− 2
W [Ric] − (n− 3)(n− 4)W [dφ⊗ dφ] = 0 (15)

Note that W [Ric] = W [Ric◦] = W [(n − 2)P ◦] = . Equation 15 motivates the
following

Definition 6.5. For a pseudo-Riemannian manifold (M, g) of dimension n ≥ 4
one defines the Bach tensor

B = div1div4W +
n− 3

n− 2
W [Ric]

Hence we obtain part (a) of the following theorem presenting a necessary condi-
tion for a metric to be conformally Einstein. In the 4-dimensional case this result
can be found in [KN’85, Thm.2], for arbitrary dimension in [Li’01]. Following
[GN’06] in part (b) a sufficient condition is formulated. The metric is called weakly
generic in [GN’06] if W (V, ., ., .) = 0 holds if and only if V = 0, i.e. the Weyl tensor

viewed as map TM →⊗3 TM is injective.

Theorem 6.6. Let (M, g) be a pseudo-Riemannian manifold.

(a) (n = 4 : [KN’85, Thm.2]; n ≥ 4 : [Li’01, Rem.2])
If (M, g) is conformally Einstein such that g = exp(−2φ) g is Einstein then
the Cotton tensor C and the Bach tensor B satisfy the following equations:

C −W (., ., ., gradφ) = 0 (16)

B + (3 − n)(n− 4)W [dφ⊗ dφ] = 0 (17)

(b) (n = 4 : [KN’85, Thm.2] n ≥ 4 : [GN’06, Thm.2.2])
Let the metric be weakly generic and let for some vector field V with dual
one form V # the following equations be satisfied:

C −W (., ., ., V #) = 0 (18)

B + (3 − n)(n− 4)W
[

V # ⊗ V #
]

= 0 (19)

then the metric is conformally Einstein. The vector field V = gradφ is locally
a gradient field and g = exp(−2φ) g is an Einstein metric.

If we consider the Weyl tensor as endomorphism W : Λ2(T ∗M) → Λ2(T ∗M)
then Listing [Li’01] calles the Weyl tensor non-degenerate if W has maximal rank.
Then he defines the vector field

T :=
1

n− 3

n
∑

i,k=1

ǫiǫkW−1 [divW (., ., Ei)] (Ei, Ek)Ek . (20)



16 Wolfgang Kühnel, Hans-Bert Rademacher

Using the conformal Einstein equations written in Proposition 6.3 with the help
of the Schwarzian tensor one obtains the following tensorial characterization:

Theorem 6.7. ([Li’01, Thm.2], [GN’06, Prop.2.7])
A pseudo-Riemannian manifold (M, g) with non-degenerate Weyl tensor is locally
conformally Einstein if and only if the the vector field T defined in Equation 20
satisfies:

Ric◦ + (n− 2)FT = 0

This result can be extended to weakly generic metrics, cf. [Li’06] and it is shown
in [GN’06, Prop.2.7] that the tensor field G := Ric◦ + (n − 2)FT is conformally
invariant. It is used in [GN’06, Thm.2.10] to define a natural polynomial in the
Riemannian curvature tensor and its covariant derivatives of conformal weight
2n(n − 1) whose vanishing for a weakly generic metric characterizes conformally
Einstein metrics. Conformally Einstein metrics can be characterized as conformal
structures for which the standard tractor bundle admits a parallel section, cf. for
example [GN’06, Sec.3]

One can also use the vector field T and Theorem 6.6(b) to define a generalized
Bach tensor which is conformally covariant not only in dimension 4, cf. [Li’06].
For the rest of this section we consider the particular case of dimension four:
For a pseudo-Riemannian manifold of dimension 4 the definition of the Bach tensor
B given in Definition 6.5 reads: B = div1div4W+(W [Ric])/2 and in index notation

Bij =
4
∑

k,l=1

∇k∇lWkijl +
1

2

4
∑

k,l=1

RklWkijl .

The Bach tensor in dimension 4 is a symmetric, trace free and divergence free
tensor and it is conformally covariant, i.e. if g = f−2 g then Bg = f2Bg . For a
compact manifold it is the gradient of the functional

W(g) =

∫

M

|Wg|2 dVg (21)

We call a metric Bach-flat, if the Bach equation B = 0 is satisfied. Hence this
equation is the Euler-Lagrange equation of the functional W . In particular metrics
which are locally conformal to an Einstein metric are Bach flat. In the Riemannian
case half conformally flat metrics are also Bach flat, but they are not weakly
generic.

As a consequence of Theorem 6.6 we obtain:

Corollary 6.8. [KN’85, Thm.2] A pseudo-Riemannian and weakly generic mani-
fold (M, g) of dimension 4 with non-degenerate Weyl tensor is conformally Einstein
if and only if it is Bach-flat and conformally equivalent to a space with a harmonic
Weyl tensor, i.e. if for some vector field V : B = 0 ; C = W (., ., ., V #) .

As an interesting class of conformally Einstein metrics in dimension 4 one can
discuss products of surfaces, cf. [DS’00, ch. 18]. Here extremal metrics on surfaces
play a particular role, we call a metric h on a surface S with Gaussian curvature
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κ extremal, if ∇2κ = σh for some function σ, i.e. if gradκ is a conformal vector
field on the surface. Then one can show that 2σ = ∆κ and the so-called first
(classifying) parameter c and the second (classifying) parameter p with

c := ∆κ+ κ2; p := cκ− h(gradκ, gradκ) − κ3

3
(22)

are constants. Let F be the cubic polynomial

F (κ) = cκ− p− κ3

3
, (23)

then we conclude from Theorem 5.5 and the formula for the Gauss curvature, cf.
[DS’00, Lemma 18.9]: If for some κ1 F (κ1) 6= 0 then we can introduce coordinates
κ, θ in in a neigborhood of κ1 such that the metric is of the following form:

ηF (κ)dθ2 +
1

F (κ)
dκ2 , (24)

with η = ±1. These metrics (in arbritrary dimension) were first introduced by
Calabi in the Riemannian setting as critical Kähler metrics for certain curvature
functionals, see [Be’87, ch. 11E]. As an equivalent characterization one can use
that the gradient grads of the scalar curvature is a holomorphic vector field. Then
one obtains the following

Proposition 6.9. Let (M4, g) = (M2
1 , g1)× (M2

2 , g2) be a product of two surfaces
with a pseudo-Riemannian product metric g = g1 ⊕ g2 whose scalar curvature
s is nowhere vanishing. Then the pseudo-Riemannian manifold (M, g) is locally
conformally Einstein if and only if both surface metrics are extremal and have the
same first classifying parameter. The conformally equivalent Einstein metric g is
uniquely determined up to a constant.

Hence we can introduce coordinates κi, θi; i = 1, 2 on (Mi, gi) and classifying
parameters c, p1, p2 with the corresponding cubic polynomials Fi(κi) = cκi − pi −
κ3
i /3, i = 1, 2

g = ǫ1F1(κ1)dθ
2
1 +

1

F1(κ1)
dκ2

1 + ǫ1F2(κ2)dθ
2
2 +

1

F2(κ2)
dκ2

2 (25)

Then the conformally equivalent Einstein metric is given by

g =
4

S2
g =

1

(κ1 + κ2)2
g (26)

and has scalar curvature S = 3(p1 + p2). These examples can be found in several
papers, cf. for example [Wo’43]. They also occur in the context of conformal
gravity where the field equation B = 0 is considered, cf. [FS’80],[DS’00].
Note that the Schwarzschild metric is a Ricci flat metric which is conformally
equivalent to the product of two surface metrics one of which has constant Gaussian
curvature.
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7. Conformal gradient fields

This section deals with conformal gradient vector fields

V = gradf

and simultaneously with vector fields which are integrable (or closed), so that
they are locally gradient fields.This means that for every point p ∈ M there is a
neighborhood U and a function f ∈ C∞(U) such that V = gradf . It follows that
gradf is conformal if and only if the Hessian ∇2f(X,Y ) := 〈∇Xgradf, Y 〉 satisfies
the equation

∇2f = σg (27)

since Lgradfg(X,Y ) = 2∇2f(X,Y ). The Laplacian ∆f is the divergence of the
gradient of f , so in the equation above the factor σ is nothing but the Laplacian,
divided by the dimension:

∇2f =
∆f

n
g (28)

From Equation 27 we obtain the following Ricci identity for the curvature tensor
introduced in Equation 4

R(X,Y )gradf = X(σ)Y − Y (σ)X . (29)

By contraction we obtain for the Ricci tensor:

Ric(X, gradf) = (1 − n)X(σ) . (30)

It turns out that one can integrate equation 27 by reducing it to an ODE whenever
the gradient of f is not isotropic. This can be done along the lines of Brinkmann’s
results [Br’25]. The following lemma was stated by Fialkow [Fi’39, p.471].

Lemma 7.1. Let (M, g) be a pseudo–Riemannian manifold. Then the following
conditions are equivalent:

(1) There is a non–constant solution f of the equation ∇2f = ∆f
n
g in a neigh-

borhood of a point p ∈M with 〈gradf(p), gradf(p)〉 6= 0.

(2) There is a neighborhood U of p , a C∞–function f : (−ǫ, ǫ) → R with f ′(t) 6=
0 for all t ∈ (−ǫ, ǫ) and a pseudo–Riemannian manifold (M∗, g∗) such that
(U, g) is isometric to the warped product

(

(−ǫ, ǫ) , ηdt2
)

×f ′ (M∗, g∗)) =
(

(−ǫ, ǫ) ×M∗ , ηdt2 + f ′(t)2g∗
)

where η := sign〈gradf(p), gradf(p)〉 ∈ {±1}.

Proof. (2) ⇒ (1): Define the function f : (−ǫ, ǫ) ×M∗ → R by f(t, x) = f(t).
Then gradf(t, x) = f ′(t) · η · ∂t and ∇∂t

gradf = f ′′(t) · η · ∂t. Let X be a lift of a
vector field on M∗, then by Equation 27 we have ∇Xgradf = f ′′ · η ·X .

(1) ⇒ (2) : Let U be a neigborhood of p ∈ M with compact closure and with
〈gradf(q), gradf(q)〉 6= 0 for all q ∈ U . Hence c = f(p) is a regular value, let M∗ be
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the connected component of f−1(c) containing p. Then there is an ǫ > 0 such that
the normal exponential map exp⊥ : (−ǫ, ǫ) ×M∗ → M defines a diffeomorphism
onto the image. Let q ∈ U , g(X, gradf(q)) = 0, then it follows immediately that

Xg(gradf, gradf) = 2
∆f

n
g(gradf,X) = 0 . (31)

Hence 〈gradf, gradf〉 is constant along the level hypersurfaces f−1(c′) and the
level hypersurfaces f−1(f(exp(t, x0))) , t ∈ (−ǫ, ǫ) are parallel. Therefore they
coincide with the t–levels and f can be regarded as a function only of t, written
as f(t, x) = f(t) by slight abuse of notation and gradf(t, x) = f ′(t) · η∂t as well as

∇2f = 2f ′′ηg =
∆f

n
g . (32)

The equation g(∂t, ∂t) = η = sign〈gradf(p), gradf(p)〉 follows since the curve
t 7→ exp(tgradf(x)) is a geodesic. Let X be a lift of a vector field on M∗, then
g(∂t, X) = 0 by the Gauss Lemma. If X1, X2 are vectors tangential to M∗ at x0

and Xi(t) = d exp(t, x0)(Xi), i = 1, 2 then

d

dt
|t=sg(X1, X2)(t) = L∂t

g(X1, X2)(s) =
η

f ′(s)
Lgradfg(X1, X2)(s) =

2η

f ′(s)
∇2
X1(s),X2(s)f = 2

f ′′(s)

f ′(s)
g(X1, X2)(s) .

The claim follows from the uniqueness of the solution of the ODE

((f ′)−2g(X1, X2))
′(t) = 0.

The metric g∗ is non–degenerate since it is orthogonal to the time-like or space-like
t-direction.

Proposition 7.2. [Kb’76, Prop.2] [KR95]
Let V be a non–trivial closed conformal vector field on the n–dimensional

pseudo–Riemannian manifold (M, g).

1. If V (p) = 0, then divV (p) = n · λ(p) 6= 0, in particular all zeros of V are
isolated.

2. Denote by C = C(M, g) the vector space of closed conformal vector fields,
then dim C ≤ n+ 1.

If the dimension of the space of closed conformal vector fields is maximal, i.e., if
dimC(M, g) = n+ 1, then the manifold is of constant sectional curvature.

Lemma 7.3. Let ∂t be the unit tangent vector in direction of the first factor of the
product I ×M∗ and let X,Y, Z be lifts of vector fields on M∗. Here I denotes an
open interval in R. Denote by ∇∗,R∗,Ric∗, ρ∗ the Levi–Civita covariant derivative,
the Riemannian curvature tensor and the normalized scalar curvature of (M∗, g∗).
(The normalized scalar curvature of the standard sphere with sectional curvature
1 is also 1). Then we have the following formulae for the corresponding geometric
quantities ∇,R,Ric, ρ of the warped product metric g = dt2 + f2(t):



20 Wolfgang Kühnel, Hans-Bert Rademacher

1. ∇∂t
∂t = 0

∇∂t
X = ∇X∂t = f ′

f
X

∇XY = − g(X,Y )
f

ηf ′∂t + ∇∗
XY

2. R(X,Y )Z = R∗(X,Y )Z − f ′2

f2 η{g(Y, Z)X − g(X,Z)Y }
R(X,Y )∂t = 0

R(X, ∂t)∂t = − f ′′

f
X

3. Ric(Y, Z) = Ric∗(Y, Z) − η
f2 {(n− 2)f ′2 + f ′′f}g(Y, Z)

Ric(Y, ∂t) = 0

Ric(∂t, ∂t) = −(n− 1) f
′′

f

4. f2ρ = n−2
n
ρ∗ − n−2

n
f ′2η − 2

n
ηf ′′f

This follows from the formulae for warped products in general, cf. [ON’83, ch.7]
since

∇f = f ′η∂t , ∇2
∂t,∂t

f = g(∇∂t
∇f, ∂t) = f ′′ .

Note, however, that the curvature tensor in [ON’83] has the opposite sign. The
formulae in the Riemannian case and the pseudo–Riemannian case coincide if we
consider in the case η = −1 the warped product g̃ = dt2+f2(t)g̃∗ , g̃∗ = −g∗ which
is anti–isometric to g (then ρ̃ = −ρ, ρ̃∗ = −ρ∗, . . .). In particular we obtain as in
the Riemannian case the

Corollary 7.4. The warped product (I, ηdt2)×f (M∗, g∗) is an Einstein metric (a
metric of constant sectional curvature) if and only if g∗ is an Einstein metric ( a
metric of constant sectional curvature) and f ′2 + ρηf2 = ηρ∗.

Near a regular point of a function f satisfying ∇2f = λg the metric has the
structure of a warped product, cf. Lemma 7.1. Around a critical point we can use
geodesic polar coordinates and obtain the following.

Proposition 7.5. [Kb’76], [KR95]
Let (M, g) be a pseudo–Riemannian manifold with a non–constant solution f

of the equation ∇2f = λg for a function λ and with a critical point p ∈M .

1. (cf. [Ta’65], [Kü’88, lemma 18] in the Riemannian case) Then there are
functions f± such that the metric in geodesic polar coordinates (r, x) ⊂ R×Σ
in a neighborhood U of p has the form

g(r, x) = ηdr2 +
f ′
η(r)

2

f ′′
η (0)2

g1(x) ; η = 〈x, x〉 (33)

and f(r, x) = fη(r), λ(r, x) = λη(r) with λη(r) = ηf ′′(r), in particular the
metric is conformally flat in a neighborhood of the critical point.
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2. If all geodesics through p are defined on the whole real line R then the metric
g is of the form above for all (r, x), as long as f ′

η(r) does not vanish.

Definition 7.6. We call a pseudo-Riemannian manifold with a conformal vector
field C-complete if every point can be joined by a geodesic with some zero of the
vector field. In the case of a gradient field gradf this means that every point can
be joined by a geodesic with some critical point of the function f .

Theorem 7.7. Let (M, g) be a pseudo–Riemannian manifold carrying a non–
constant solution f of the equation ∇2f = λ g having critical points. We assume
either that all geodesics through critical points are defined on R and that (M, g) is
null complete or that (M, g) is C-complete.

Then the manifold (M, g) is (locally) conformally flat. One can define neigh-
borhoods Mj for every critical point pj on which the metric has the form as in 33.
These neighborhoods Mj cover M .

Theorem 7.7 follows from Proposition 7.5 since around each critical point the
metric is conformally flat by the equation 33 in polar coordinates. On the other
hand, the level (M∗, g∗) in the warped product metric according to Lemma 7.1
cannot change along the geodesic t-lines. Therefore the completeness assumption
implies the assertion.

With regard to the global geometry of complete manifolds, the main results of
[KR95] and [KR97b] are the following:

Theorem 7.8. [KR95]

For any signature (k, n− k) with 1 ≤ k ≤ n− 1 there exists a smooth pseudo–
Riemannian manifold of dimension n carrying a complete conformal gradient field
V = gradf with an arbitrary prescribed number N ≥ 1 of isolated zeros (including
the case of infinitely many zeros in two different ways corresponding to IN or Z).
These manifolds are C-complete.

Theorem 7.9. [KR95]

Let Mn
k be a geodesically complete pseudo–Riemannian manifold of signature

(k, n) with 2 ≤ k ≤ n − 2 carrying a non–trivial conformal gradient field with at
least one zero.

1. The diffeomorphism type of Mn
k is uniquely determined by the number N

of zeros. Here in the case of infinitely many zeros we have to distinguish
between IN and Z.

2. Every manifold is conformally equivalent to a standard manifold M(J)(α, β)
defined in [KR95, p.468].

3. If in addition the vector field is complete then the conformal type is uniquely
determined by the number N of zeros.
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In the Lorentzian case k = 1 the disconnectedness of the geodesic distance
spheres opens up more possibilities for the global conformal types which can be
described by the gluing graph. In the Riemannian case part 3.) of Theorem 7.9 is
given in [Bo’70].

Definition 7.10. Let M be a Lorentzian manifold with a conformal gradient field
gradf . The associated graph G(M, f) is defined as follows:

1. The vertices of G(M, f) are the critical points of f in M .

2. Every vertex is contained in three edges, one space-like and two time-like
ones. These correspond to the space-like cone and the two components of the
time-like cone in M at that point.

3. Two vertices are joined by an edge if and only if there is a trajectory of the
vector field from one to the other, in such a way that the trajectory passes
through the corresponding space-like or time-like cones.

Obviously each edge has a unique character (+) if it is space-like or (−) if it is
timelike. We can use this as a label for each edge. It is possible that an edge is
incident with only one vertex. This is called a free edge. It is also possible that
two vertices are joined by more than one edge.

If M is C-complete then every point can be joined by a geodesic with some
critical point of f . Consequently, every point is somehow represented by an edge
in the associated graph. In the case of signature 2 ≤ k ≤ n − 2 the analogous
associated graph has to be a linear graph since the time-like cone is always con-
nected. In the Lorentzian case k = 1 or k = n− 1 there are many possibilities and
interesting properties of these graphs. They may have cycles. Furthermore, M is
simply connected if and only if the associated graph is a tree.

Proposition 7.11. [Bc’98]
Let M1,M2 be two C-complete Lorentzian manifolds admitting conformal gradi-

ent fields gradf1, gradf2, respectively, each with at least one zero. If F : M1 →M2

is a conformal diffeomorphism transforming at least one critical point of f1 into a
critical point of f2, then F preserves the trajectories and induces an isomorphism
between the two associated graphs including the labeling.

On the other hand, a conformal classification in general has to incorporate more
than just the combinatorial structure of the associated graph with the labeling (+)
and (−). In addition one needs a time orientation and weights on the edges. The
weight is a positive real number (including ∞ for free edges) associated with an
edge. Somehow the weights correspond to the lengths of the trajectories after
a conformal development. Different developments lead to constant ratios of the
weights. These constants have to be factorized out. The details can be found in
[Bc’98].

There remains a discussion of the case of a conformal gradient field which is
isotropic on an open set. Here we have the following:
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Theorem 7.12. (Brinkmann [Br’25]) [Ca’06]
Assume that (M, g) is a pseudo-Riemannian manifold of dimension n ≥ 3 ad-

mitting a non-vanishing and isotropic conformal gradient field, i.e., a non-constant
solution f of the equation 27 such that gradf is isotropic on an open subset. Then
gradf is in addition parallel, and the metric tensor can be brought into the form
g = dudv + g∗(u) where gradf = ∂

∂u
= gradv and where the (n − 2)-dimensional

metric g∗(u) does not depend on v.

Such spaces carrying a parallel isotropic vector field are often called Brinkmann
spaces. The transition from a non-isotropic gradient to an isotropic one is further
explained in [Ca’06]. It corresponds to passing to the limit α → 0 in the metric
g = −α(u)du2 + dudv + g∗(u).

We mention here the isotropic case in a generalized Liouville theorem which is
the case of a conformal mapping preserving the Ricci tensor.

Theorem 7.13. [KR’06]
Assume that an n-dimensional pseudo-Riemannian manifold (M, g) admits a

conformal mapping F : M →M such that the conformal factor ϕ has an isotropic
gradient gradϕ 6= 0 everywhere. Assume further that F preserves the Ricci tensor
and the null-congruence given by the parallel and isotropic vector ∂v = gradϕ.
Then in certain coordinates u, v, xk (k = 1, . . . , n− 2) the metric has the form

g = −2dudv +
∑

i,j

g#
ij (u, xk)dx

idxj

and, up to an isometry, F has the form

F (u, v, xk) =
(

− 1

cu
, cv + ζ(u, xk), ξ1(u, xk), . . . , ξn−2(u, xk)

)

with a constant c and with a certain function ζ, where for any fixed u, v the trans-
formation

(x1, . . . , xn−2) 7→ (ξ1, . . . , ξn−2)

is a homothety with respect to the metric g#. The conformal factor of F is the
function ϕ(u, v, xk) = u, i.e., F ∗g = u−2g.

Conversely, Let h be any metric on an (n−2)-dimensional space M∗ admitting
a 1-parameter group Φu of similarities (homothetic transformations) with Φ∗

uh =
u−2h. Then on M = R+ × R × M∗ the metric g = −2dudv + Φ∗

uh admits a
conformal mapping F such that the conformal factor u has an isotropic gradient
gradu = ∂v. In this case F acts on M∗ by the similarities Φu.

8. 4-dimensional Lorentzian manifolds

In General Relativity one considers 4-dimensional spacetimes of 3 + 1 dimensions
which can also be described as 4-dimensional Lorentzian manifolds with a metric
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tensor of signature (1, 3), modelled after the flat Minkowski space R
4
1 with the

metric

g = −dt2 + dx2 + dy2 + dz2.

For an observer at rest time corresponds to the t-axis and space to the (x, y, z)-
part. The local conformal group of this Minkowski space is 15-dimensional. It
is generated by four translations, six rotations (that is, the group O(3, 1)), one
homothety x 7→ cx and four proper conformal mappings. The corresponding con-
formal vector fields are four infinitesimal translations, six infinitesimal rotations
(i.e., the Lie algebra o(3, 1)), the radial vector field V (X) = X and the vector fields
V (X) = 2〈X,T 〉X − 〈X,X〉T for a fixed vector T .

It is well known [So’97] that the local conformal group of Minkowski space is
isomorphic with O(4, 2)/{±}. It is also well known that any spacetime which is
not locally conformally flat has a conformal group which is at most 7-dimensional
[He’91]. The case of dimension 7 is fairly interesting since in this case all Ricci flat
metrics (or vacuum spacetimes) can be determined which admit a 7-dimensional
conformal group which is not contained in the isometry group, see Theorem 8.3.
For further related results cf. [Hl’04], [DS’99].

By Theorem 5.5 any 4-dimensional Lorentzian Einstein space (not of constant
sectional curvature) is a vacuum spacetime if it admits a non-homothetic conformal
vector field V . For vacuum spacetimes in turn we can formulate the following
statement:

Theorem 8.1. A vacuum spacetime admitting a non-homothetic conformal vector
field is either locally flat or is locally a pp-wave (plane–fronted wave).

Definition 8.2. The class of pp-waves (or plane-fronted waves) in general is given
by all Lorentzian metrics on open parts of R

4 = {(u, v, x, y)} which are of the form

ds2 = −2H(u, x, y)du2 − 2dudv + dx2 + dy2

with an arbitrary function H, the potential, which does not depend on v. The
subclass of plane waves is given by all H of the form

H(u, x, y) = a(u)x2 + 2b(u)xy + c(u)y2,

compare [Si’74].

Isometric, homothetic and conformal vector fields of pp-waves were classified in
a kind of a recursive normal form in [MM’91], starting from the possible Killing
fields. On the other hand, the possible isometry groups are known from the work of
Ehlers-Kundt [EK’62] and Sippel-Goenner [SG’86]. Furthermore it is well known
that the isometry group is of codimension at most one in the homothety group, and
that in turn the homothety group is of codimension at most one in the conformal
group, compare [Hl’04]. For a discussion of homothetic transformations with one-
dimensional fixed point set see also [Al’85]. At the maximum dimension we have
the following result:
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Theorem 8.3. ([KR’04])

All vacuum spacetimes admitting a 7-dimensional conformal group (together
with the vector fields themselves) can be explicitly determined in terms of elemen-
tary functions and a finite number of parameters. Moreover there is one family
admitting a non-homothetic conformal vector field.

The typical candidate of a hon-homothetic conformal vector field on a pp-wave
is the standard special conformal vector field V3 which we already met in Section
3. The flow of V3 is explicitly given by Φt(u, v, x, y) = 1

1−2tu

(

u, v(1− 2tu)+ t(x2 +

y2), x, y
)

. Any fixed trajectory is a straight line. This vector field is depicted in
Figure 1 and Figure 2 below where the (x, y)-plane is reduced to just the (x, 0)-
axis2.
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Figure 1. The standard special conformal vector field V3 in the (u, v, x, 0)-slice

2We thank Andreas App for providing these figures in Matlab
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Figure 2. The projection of V3 into the (u, 0, x, 0)-plane

Theorem 8.4. ([KR’04]) Assume that a vacuum pp-wave with metric

g = −2H(u, x, y)du2 − 2dudv + dx2 + dy2

admits the standard conformal vector field V3 = u2∂u+ 1
2 (x2 +y2)∂v+ux∂x+uy∂y.

Assume further that the function H is defined in a neighborhood of x = y = 0 for
any fixed u0 6= 0. Then in a neighborhood of u0 H can be written as

H(u, x, y) =
∑

n≥0

u−(n+2)Pn(x, y)

where Pn denotes a homogeneous polynomial of degree n in the variables x, y which
is harmonic, i.e. ∆Pn = 0. Vice versa, any function H of that type admits the
standard conformal vector field V3, compare Section 3.

Due to the singularity u = 0 this vector field does not have a zero in the
spacetime (except for the flat case). A classification of conformal vector fields
with zeros is still not complete. In the case of closed vector fields see Section 7.
For non-closed fields there are normal forms under additional assumptions on the
Petrov type of the metric, see [Hl’04], [St’06]. Typical results are the following:

Proposition 8.5. Let (M, g) be a spacetime of constant Petrov type D, and let q
be a zero of the conformal vector field V . Then the following hold:

1. divV (q) = 0,

2. after a conformal change of g the vector field becomes isometric,
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3. in certain coordinates y0, . . . , y3 we have

V = κy0∂y0 − κy1∂y1 − αy2∂y2 + αy3∂y3

where α, κ are real constants.

Proposition 8.6. Let (M, g) be a spacetime of constant Petrov type III, and let q
be a zero of the conformal vector field V . Then the following hold:

1. divV (q) 6= 0,
2. after a conformal change of g the vector field becomes homothetic,
3. in certain coordinates y0, . . . , y3 we have

V = divV (q)(3y0∂y0 − y1∂y1 + y2∂y2 + y3∂y3).

Proposition 8.7. Let (M, g) be a spacetime of Petrov type I or II, and let q be a
zero of the conformal vector field V . Then V vanishes identically.

It does not seem to be known what happens if the Petrov type degenerates at
exactly the zero of the vector field. Possibly there are more cases to be considered.
However, examples are still missing.

Any conformal vector field V on a vacuum spacetime preserves the Ricci ten-
sor, i.e., LV Ric = 0. This is a trivial case of a so-called Ricci collineation. In
more generality, one can consider the case that LV Ric is conformal to the metric.
This is a conformal Ricci collineation , as defined in [KR’01]. A conformal Ricci
collineation preserves the eigendirections of the Ricci tensor.

Further aspects of the conformal geometry of spacetimes can be found in
[HS’02].

9. The transition to the Penrose limit

In 1976 R.Penrose introduced in [Pe’76] the following construction which associates
to any lightlike geodesic on a Lorentzian manifold a plane wave metric. In several
recent papers about models for supergravity respectively string theory, in particular
regarding the maximally supersymmetric type IIB plane wave background and its
relation to AdS5×S5 the Penrose limit has been discussed intensively, cf. [BF’02],
[BP’04] and the survey article [Sa’04].

Along a lightlike geodesic γ : I →M on a Lorentzian manifold of dimension n
which is free of conjugate points it is possible to introduce coordinates (U, V, Y ) =
(U, V, Y1, . . . , Yn−2) such that the metric nearby the geodesic is of the form

g = dV

(

2dU + a(U, V, Y )dV + 2

n−2
∑

i=1

bi(U, V, Y )dYi

)

+

n−2
∑

i=1

gij(U, V, Y )dYidYj .

(34)
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In these coordinates the lightlike geodesic γ is of the form γ(U) = (U, 0, 0), it
is embedded in a congruence of lightlike geodesics U 7→ (U, V1, Y1) for any fixed
(V1, Y1). Then we introduce a scaling of coordinates, for any positive λ let

(U, V, Y1, . . . , Yn−2) = (u, λ2v, λy1, . . . , λyn−2) (35)

In the new coordinates the scaled metric gλ = λ−2g is of the form

gλ = dv

(

2du+ λ2a(u, λ2v, λy)dv + 2λ
n−2
∑

i=1

bi(u, λ
2v, λy)dyi

)

+
n−2
∑

i=1

gij(u, λ
2v, λy)dyidyj .

Then Penrose [Pe’76] introduced the following construction:

Definition 9.1. The Penrose limit is defined with respect to the coordinates
(u, v, y1, . . . , yn−2) introduced in Equation 35 as the metric

g := lim
λ→0

gλ = 2dudv +
n−2
∑

i,j=1

gij(u)dyidyj (36)

with gij(u) = gij(u, 0, 0).

This is a plane wave metric in the so-called Rosen coordinates.
Now we investigate whether a conformal vector field

ξ(U, V, Y ) = A(U, V, Y )∂U +B(U, V, Y )∂V +

n−2
∑

i=1

Ci(U, V, Y )∂Yi

survives under this limit construction. We express the conformal field λ2ξ in the
coordinates (u, v, y) :

λ2ξ(u, v, y) = B(u, λ2v, λy)∂v + λ

n−2
∑

i=1

Ci(u, λ
2v, λy)∂yi

+ λ2A(u, λ2v, λy)∂u

and assume that one of the coefficient functions for fixed (u, v, y): B(u, λ2v, λy),

λ
∑n−2

i=1 Ci(u, λ
2v, λy), λ2A(u, λ2v, λy) has a Taylor expansion around λ = 0 with a

leading term λkfk(u, v, y), fk(u, v, y) 6= 0 We also assume that k ≥ 0 is the minimal
exponent with this property. Then the limit ξ(u, v, y) := limλ→0 λ

2−kξ(u, v, y) is
a non-trivial vector field. Let Lξ g = φg, i.e. φ = divξ/n . Since

Lλ2−kξ(u,v,y)

(

λ−2g
)

= λ2−kφ(u, λ2v, λy)
(

λ−2g
)

we obtain in the limit λ → 0 that the vector field ξ is a non-trivial conformal
vector field. Therefore the property to be a conformal vector field is a hereditary
property, the corresponding argument for Killing fields can be found for example
in [BF’02, ch.4.3].

We summarize this considerations in the following
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Proposition 9.2. For a conformal and analytic vector field ξ = ξ(U, V, Y ) of
the Lorentzian metric g in coordinates (U, V, Y ) adapted to a lightlike geodesic
γ(U) = (U, 0, 0) by Equation 34 there is a non-negative integer k such that the
limit ξ(u, v, y) := limλ→0

(

λ2−kξ(u, λ2v, λy)
)

is a conformal vector field on the
Penrose limit given by Equation 36.

The Proposition shows the importance of the conformal geometry of plane
waves, resp. the description of the conformal vector fields, cf. Section 8.

One can transform the Penrose limit in Rosen coordinates given in Equation 36
into Brinkmann coordinates x = (x1, x2, . . . , xn). Then the Penrose limit is of the
form

g = 2dx1dx2 +

n
∑

i,j=3

Aij(x1)xixjdx
2
1 +

n
∑

i=3

dx2
i (37)

These is the coordinate form of a plane wave used used in the four-dimensional
case in Section 8, see for example Definition 8.2. Now the wave profile Aij(x1) of
the plane wave coincides with the only non-vanishing curvature components

Aij = R1ij1 = R(∂1, ∂i, ∂j , ∂1) ; i, j = 3, 4, . . . n

of the plane wave metric. The coordinate transformation as well as the curvature
computations are explained in detail for example in [Gü’88, ch. VIII.2].

This allows the following invariant interpretation of the Penrose limit:

Proposition 9.3. (Blau et al. [BP’04, (2.14)]):
Let γ = γ(u) be a lightlike geodesic of a Lorentzian manifold (M, g). We assume
that e1, e2, e3, . . . , en is an pseudo-orthonormal frame in the tangent space Tγ(0)M
with e1 = γ′(0); g(e1, e2) = g(ei, ei) = 1 for all i = 3, 4, . . . , n and g(ei, ej) = 0 oth-
erwise and let e1(u), e2(u), e3(u), . . . en(u) be the parallel transport of (e1, . . . , en)
along γ. Then the Penrose limit of (M, g) associated to the lightlike geodesic is the
plane wave metric

2dx1dx2 +

n
∑

i,j=3

Aij(x1)xixjdx
2
1 +

n
∑

i=3

dx2
i

with the wave profile
Aij(x1) = R (e1, ei, ej, e1)

Here R is the curvature tensor of (M, g).

It follows in particular that the Penrose limit of an Einstein manifold is Ricci
flat.

10. Conformal vector fields and twistor spinors

For a pseudo-Riemannian manifold (M, g) of signature (k, n−k) with spin structure
the tangent bundle acts on the spinor bundle Σ via the Clifford multiplication
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X⊗ψ ∈ T∗M ⊗ΣM 7→ X ·ψ ∈ ΣM. The spinor bundle carries the spin connection
∇ and a hermitian inner product 〈., .〉 satisfying the equations

〈X · φ, ψ〉 = (−1)k+1〈φ,X · ψ〉
X(〈φ, ψ〉) = 〈∇Xφ, ψ〉 + 〈φ,∇Xψ〉 .

For the details of this construction see [BF’91] and [Fr’00] in the Riemannian case
and [Ba’81] in the pseudo-Riemannian case. A spinor field ψ is called parallel if
∇ψ = 0, i.e. for all tangent vectors X : ∇Xψ = 0. The composition of the spin
connection and the Clifford product defines the Dirac operator D. If e1, . . . , en is an
orthonormal frame with g(ei, ej) = ǫiδij , ǫ1 = . . . = ǫp = −1, ǫp+1 = . . . = ǫn = 1,
then

Dψ =

n
∑

i=1

ǫi ei · ∇ei
ψ . (38)

Definition 10.1. We call a spinor field ψ a twistor spinor if the following twistor
equation is satisfied for all tangent vectors X :

∇Xψ +
1

n
X ·Dψ = 0 . (39)

Twistor spinors can also be described as the kernel of a differential operator
D, called the twistor operator or Penrose operator: It is the composition of the spin
connection with a projection onto the kernel of the Clifford product:

Dψ =

n
∑

i=1

ǫiei ⊗
(

∇ei
ψ +

1

n
ei ·Dψ

)

(40)

The Dirac operator D and the twistor operator D are both conformally covariant
in the following sense. If g = exp(4φ) g then there is a isometry between the spinor
bundles ψ ∈ ΣgM → ψ ∈ ΣgM such that for the Dirac operators D = Dg and
D = Dg resp. the twistor operators D = Dg and D = Dg the following equations
hold, cf. [BF’91, ch.(1.3),(1.4)], [Fr’89]:

Dψ = e−(n+1)φD
(

e(n−1)φψ
)

Dψ = e−φD
(

e−φψ
)

Hence the dimension of twistor spinors is a conformal invariant, if ψ is a twistor
spinor of the pseudo-Riemannian manifold (M, g) then eϕψ is a twistor spinor of
the conformally equivalent metric g = exp(4φ) g. In this sense the twistor equation
Dψ = 0 is conformally covariant. Particular twistor spinors are Killing spinors, they
satisfy the equation

∇Xψ = λX · ψ (41)

for a complex number λ and for all tangent vectors X. Then one can conclude from
the relation between the curvature of the spin connection and the Riemannian
curvature tensor:
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Proposition 10.2. Let (M, g) be a pseudo-Riemannian manifold of signature
(k, n−k) with a Killing spinor ψ, i.e. ∇Xψ = λX ·ψ for some complex number λ.

(a) The scalar curvature S is constant and satisfies S = 4n(n− 1)λ2.

(b) The Ricci curvature as a (1, 1) tensor satisfies
{

Ric(X) − 4λ2(n− 1)X
}

· ψ = 0.

Therefore the complex number λ is either real or purely imaginary, then we
call the Killing spinor either a real Killing spinor or an imaginary Killing spinor. If
the manifold is Riemannian then the metric is an Einstein metric. In the pseudo-
Riemannian case the traceless Ricci tensor of a manifold carrying a Killing spinor
is lightlike. If in addition the Killing spinor is not light-like then the traceless Ricci
tensor vanishes, i.e. the manifold is Einstein.
On the other hand one can show that a twistor spinor on an Einstein manifold is
either parallel or the sum of two Killing spinors:

Proposition 10.3. Let (M, g) be a pseudo-Riemannian Einstein manifold with
scalar curvature S carrying a twistor spinor ψ. Then

(a) If S 6= 0 then the twistor spinor ψ = ψ+ + ψ− is the sum of two Killing ψ±

with ∇xψ± = ± 1
2

√

S/(n(n− 1)).

(b) If S = 0 then either ψ or Dψ is a parallel spinor.

We are interested here in the conformal vector field which can be associated to
a twistor spinor:

Definition 10.4. For a spinor field ψ on a pseudo-Riemannian manifold (M, g)
of index k we call the vector field Vψ defined by g(Vψ, X) = −ik+1〈X ·ψ, ψ〉 for all
tangent vectors X the Dirac current.

Then we obtain

Proposition 10.5. Let (M, g) be a pseudo-Riemannian manifold of index k with
spinor field ψ and Dirac current Vψ.

(a) The Dirac current Vψ of a twistor spinor ψ is a conformal vector field.

(b) The Dirac current Vψ of a real (resp. imaginary) Killing spinor ψ is a Killing
vector field if p is even (resp. odd).

(c) The Dirac current Vψ of a parallel spinor ψ is a parallel vector field.

Proof. We assume that ψ is a twistor spinor: We compute the Lie derivative LV g
for V = Vψ :

LV g(X,Y ) = g(∇XV, Y ) + g(X,∇Y V )

= Xg(V, Y ) + Y g(X,V ) − g(V, [X,Y ])

= −X < Y ψ,ψ > −Y < Xψ,ψ > − < [X,Y ]ψ, ψ >

= − < Y∇Xψ, ψ > − < Y ψ,∇Xψ > − < X∇Y ψ, ψ >

− < Xψ,∇Y ψ >
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Then we conclude from the twistor equation 39:

LV g(X,Y ) = −n {< YXDψ,ψ > + < Y ψ,XDψ > +

< XYDψ,ψ > + < Xψ, Y Dψ >}
= −n

{

< (XY + Y X)Dψ,ψ > +(−1)k+1 < ψ, (XY + Y X)Dψ >
}

= 2n g(X,Y )
{

< Dψ,ψ > +(−1)k+1 < ψ,Dψ >
}

.

Hence V is a conformal vector field with divergence

divV = 2b(< Dψ,ψ >) (42)

Here b(a) for a complex number a denotes the real part of a if p is odd and
the imaginary part otherwise. This finishes the proof of part (a). If ψ satisfies
Equation 41 then Dψ = −nλψ hence by Equation 42 the Dirac current is a Killing
vector field if either λ is real and p is even of λ is purely imaginary and p is odd. If ψ
is parallel then 〈∇Y V,X〉 = Y 〈ψ,Xψ〉−〈V,∇YX〉 = 〈∇Y ψ,Xψ〉+〈ψ,X∇Y ψ〉 = 0
shows that ψ is parallel.

In the Riemannian case it may very well occur that the Dirac current of a
twistor spinor vanishes identically. If for example ψ is a parallel spinor on a
Riemannian manifold with a Dirac current Vψ which does not vanish identically
then Vψ is parallel and the manifold is locally a Riemannian product. A connection
to the problem of presenting essential conformal vector fields (cf. section 4) twistor
spinors with zeros play a particular role. On the doubled spinor bundle E = Σ⊕Σ
of a pseudo-Riemannian spin manifold there is a connection ∇E with the following
property: A section (ψ, ϕ) of the bundle E is parallel if and only if ψ is a twistor
spinor and ϕ = Dψ. This shows in particular that for a non-trivial twistor spinor
with zero p, i.e. ψ(p) = 0 we have Dψ(p) 6= 0. Therefore one can show that
∇Vψ(p) = 0, hence also divVψ(p) = 0. But since a conformal vector field W
vanishes identically if for some point p the quantities W (p) = 0;∇W (p) = 0 and
graddivW (p) = 0 vanish we conclude:

Proposition 10.6. [KR’94] Let (M, g) be a pseudo-Riemannian spin manifold
with a non-trivial twistor spinor ψ having a zero. If the Dirac current Vψ is non-
zero it is an essential conformal vector field.

In the Riemannian case we obtain the following consequence:

Theorem 10.7. [KR’94, Thm.A] If a Riemannian spin manifold (M, g) carries a
twistor spinor with zero and with non-trivial Dirac current Vψ then the manifold
is conformally flat.

K.Habermann showed in [Ha’94] a similar result under an additional curvature
and completeness assumption. So the question was whether there are examples
of twistor spinors with zeros on Riemannian manifolds which are not conformally
flat. The authors show in [KR’96] for dimension n = 4 and for even dimensions
n ≥ 4 in [KR97c] that there are complete Riemannian spin manifolds carrying
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twistor spinors with zeros which are not conformally flat. In particular in this case
the Dirac current vanishes identically. These examples are conformal compact-
ifications of irreducible and asymptotically locally Euclidean manifolds carrying
parallel spinors. This leads to the following

Theorem 10.8. [KR’98, Thm.1.2] Let (M, g) be an n-dimensional Riemannian
spin manifold carrying a twistor spinor ψ with non-empty zero set Zψ := {p;ψ(p) =
0}. Then the conformally equivalent Riemannian metric g = ‖ψ‖−4 g on M − Zψ
is either flat or locally irreducible and Ricci flat carrying a parallel spinor. In
addition corresponding to any zero point the complement M − Zψ of the zero set
Zψ has an end carrying an asymptotically Euclidean coordinate system of order 3.

For a construction of compact orbifolds which are not conformally flat and
which carry twistor spinors with zero we refer to [BG’04].
In contrast to the Riemannian case in the Lorentzian case the Dirac current is
always non-trivial. In addition the twistor spinor as well as the Dirac current can
be lightlike. For example the following result in dimension four is well known:

Theorem 10.9. (Ehlers-Kundt [EK’62])
A four-dimensional Lorentzian manifold with spin structure carrying a parallel
spinor is locally isometric to a pp-metric.

In this case the Dirac current is parallel and lightlike. For results on the
holonomy of pseudo-Riemannian manifolds with parallel spinors see Baum and
Kath [BK’99]. A description of the local geometry of Lorentzian manifolds carry-
ing twistor spinors without zeros up to dimension 7 is given by Baum and Leitner
in [BL’04]. These geometries include Brinkmann spaces with special Kähler flag,
Fefferman spaces and Lorentzian-Sasaki manifolds. For a survey on these construc-
tions we refer to [Ba’00].

The Dirac current Vψ is called non-twisting if the dual one-form ω = V #
ψ satisfies

dω ∧ ω = 0 and twisting if dω ∧ ω does not vanish anywhere.

Theorem 10.10. (Baum, Leitner [BL’04, Prop.4.3])
A Lorentzian manifold with spin structure carrying a twistor spinor with lightlike
and non-twisting Dirac current is locally conformally equivalent to a Brinkmann
space with parallel spinor.

The Dirac current also plays an important role in the classification of imaginary
Killing spinors on Lorentzian manifolds presented in [Le’05]. In one of the cases the
gradient of the length function 〈ψ, ψ〉 defines a conformal vector field, hence results
discussed in Section 7 can be used. In the Riemannian case the same argument
was used in [Ra’91] to classify manifolds carrying an generalized imaginary Killing
spinor ψ satisfying the equation ∇Xψ = ibX · ψ for some real function b and all
tangent vectors X. In [Le’04, Thm.1] it is shown that the zero set of a twistor
spinor on a Lorentzian spin manfiold consists either of isolated images of lightlike
geodesiscs or of isolated points. In the first case the metric is outside the zero set
locally conformally equivalent to a Brinkmann space with parallel spinor. In the
second case the metric is outside the zero set locally conformally equivalent ot a



34 Wolfgang Kühnel, Hans-Bert Rademacher

product metric of the form −ds2 + h, where h is a Riemannian metric carrying a
parallel spinor. The second case actually occurs at least in the C1-category:

Theorem 10.11. (Leitner [Le’06])
There exists a five-dimensional manifold with a C1-Lorentzian metric carrying a
twistor spinor with an isolated zero. The metric is not conformally flat and the
Dirac current is causal.

It remains open whether such examples exist with a higher order of differentia-
bility.
On the other hand there is the following recent result:

Theorem 10.12. (Frances [Fs’06, Cor.2])
If an analytic Lorentzian manifold (M, g) admits a non-zero twistor spinor which
has a zero then the manifold is conformally flat.

Frances actually proves the following statement about conformal vector fields
of Lorentzian manifolds, cf. [Fs’06, Thm.1]: If a smooth Lorentzian manifold of
signature (1, n− 1);n ≥ 3 carries a non-trivial conformal and causal vector field X
(i.e. ‖X‖ ≤ 0) then there is an open and non-empty subset on which the manifold
is conformally flat.
As a generalization of conformal Killing vector fields one can consider conformal
Killing forms, which are studied in detail by Semmelmann [Se’03]. The defining
equation is also called conformal Killing-Yano equation. As a particular example
for twistor spinors ψ1, ψ2 on a Riemannian spin manifold the exterior k-form

ωk(X1, . . . , Xk) = 〈(X1 ∧ . . . ∧Xk) · ψ1, ψ2〉

is a conformal Killing form. The twistor equation also allows a supersymmetric
interpretation, cf. Alekseevskii et al. [AC’98] and Klinker [Kl’05].
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[KP’94] A canonical metric for Möbius structures and its applications. Math. Z. 216
(1994), 89–129

J.Lafontaine
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