Lineare Algebra 1

Wintersemester 2019/20 Aufgaben, Blatt Nr. 7

Abgabe: Mittwoch, 4.12. vor der Vorlesung, bitte Namen, Immatrikulationsnummer und Übungsgruppe (Buchstabe A,B,,...) angeben!

- 7-1 Untersuchen Sie, welche der folgenden Familien $B = (b_i)_{i=1,2,\dots,r}$ von Vektoren in K^n linear unabhängig sind, bzw. ein Erzeungendensystem ist, bzw. eine Basis ist.
 - (a) $K = \mathbb{R}, r = 3, n = 3, B = ((3, 5, 2), (0, 1, 1), (3, 6, 2))$.
 - (b) $K = \mathbb{R}, r = 3, n = 2, B = ((3, 5), (0, 1), (3, 0))$.
 - (c) $K = \mathbb{Z}_5, r = 3, n = 3, B = (([1], [2], [3]), ([0], [1], [2]), ([3], [1], [4]))$.
 - (d) $K = \mathbb{C}, r = 2, n = 2, B = ((i, i 1), (1, 1 + i))$.
- 7-2 Sei $B = \{b_1, \ldots, b_n\}$ eine Basis des Vektorraums V.
 - (a) Bestimmen Sie für ein $i \in \{1, ..., r\}$ alle Vektoren $v \in V$, so dass $\{b_1, ..., b_{i-1}, v, b_{i+1}, ..., b_n\}$ eine Basis ist.
 - (b) Bestimmen Sie alle Vektoren $v \in V$, so dass jeder Basisvektor b_i durch v ersetzt werden kann.
- 7-3 Sei p eine Primzahl. Für den Körper $K=\mathbb{Z}_p$ betrachten wir den Vektorraum $V=\mathbb{Z}_p^2.$
 - (a) Wieviele Elemente hat der Vektorraum $\operatorname{End}(V) = \operatorname{Hom}(V,V)$ der Endomorphismen von V?
 - (b) Wieviele Elemente hat die Automorphismengruppe $Gl(V) = Aut(V) = \{f \in End(V); f \text{ bijektiv }\}$?
- 7-4 Sei K ein Körper, wir betrachten den Vektorraum $V=K^2$ und die kanonische Basis (e_1,e_2) mit $e_1=(1,0),e_2=(0,1).$
 - (a) Zeigen Sie, dass $B = (b_1, b_2)$ mit $b_1 = e_1 + \lambda e_2, b_2 = e_2$ für jedes $\lambda \in K$ eine Basis ist.
 - (b) Bestimmen Sie die zu der Basis B gehörende Koordinatendarstellung Φ_B : $(v_1, v_2) \in K^2 \longmapsto \Phi_B(v_1, v_2) \in K^2$, also die lineare Abbildung mit $\Phi_B(b_j) = e_j, j = 1, 2$.