Lineare Algebra 1

Wintersemester 2019/20 Aufgaben, Blatt **Nr. 12**

Abgabe: Mittwoch, 29.01.2020 vor der Vorlesung, Bitte bei allen Teilnehmer/innen einer Gruppe Namen, Immatrikulationsnummer und den Buchstaben der Übungsgruppe angeben!

12-1 Gegeben ist die Matrix

$$A_n = \left(\begin{array}{cccc} 0 & 1 & 0 & \dots & 0 \\ 1 & 0 & 1 & & \vdots \\ 0 & 1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 1 \\ 0 & 0 & 0 & 1 & 0 \end{array}\right).$$

- (a) Zeigen Sie, dass det $A_n = -\det A_{n-2}$ für alle $n \ge 3$.
- (b) Für welche $n \in \mathbb{N}$ ist A_n invertierbar?
- 12-2 Zeigen Sie, dass für $x_1, x_2, \ldots, x_n \in K$ gilt:

$$\det \begin{pmatrix} 1 & 1 & \dots & 1 \\ x_1 & x_2 & \dots & x_n \\ x_1^2 & x_2^2 & \dots & x_n^2 \\ \vdots & \vdots & & \vdots \\ x_1^{n-1} & x_2^{n-1} & \dots & x_n^{n-1} \end{pmatrix} = \prod_{1 \le i < j \le n} (x_j - x_i)$$

- 12-3 (a) Seien $f, g: V \longrightarrow V$ Endomorphismen des Vektorraums V und sei $v \in V$ ein Eigenvektor von f zum Eigenwert λ und auch ein Eigenvektor von g zum Eigenwert μ . Zeigen Sie: v ist ein Eigenvektor von $g \circ f$ und von $f \circ g$.
 - (b) Sie $f: V \longrightarrow V$ ein Isomorphismus und $v \in V$ ein Eigenvektor zum Eigenwert λ . Zeigen sie: $\lambda \neq 0$ und v ist auch ein Eigenvektor von f^{-1} .
 - (c) Sei $f:V\longrightarrow V$ ein Endomorphismus, sei $v\in V$ ein Eigenvektor von f zum Eigenwert λ und $w\in V$ ein Eigenvektor zum Eigenwert μ . Zeigen Sie: Wenn v+w auch ein Eigenvektor ist von f, dann gilt $\lambda=\mu$.
- 12-4 Sei

$$A = \left(\begin{array}{ccc} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{array}\right) .$$

Bestimmen Sie die Eigenwerte und Eigenräume von A. Ist A diagonalisierbar?