Funktionentheorie 1

Sommersemester 2017

Korrektur nur falls noch Punkte für die Zulassung zur Klausur benötigt werden:

Abgabe: Dienstag, 27.06.2017 vor der Vorlesung

Aufgaben zur Vorbereitung auf die Klausur, Blatt Nr. 12

- 12-1 In welchen Punkten ist die Funktion $f: \mathbb{C} \to \mathbb{C}, f(z) = |z|^2$ komplex differenzierbar?
- 12-2 Bestimmen Sie alle holomorphen Funktionen $f: \mathbb{C} \to \mathbb{C}$, für die gilt

$$Re(f(x+iy)) = x^2 - y^2 + 4x.$$

- 12-3 Bestimmen Sie die Konvergenzgebiete folgender Laurentreihen:
 - (a) $\sum_{n=-\infty}^{+\infty} \frac{z^n}{2^n + 2^{-n}}$.
 - (b) $\sum_{n=-\infty}^{+\infty} \frac{z^n}{|n-1|!}.$
- 12-4 Sei $\Gamma := \gamma_1 3\gamma_2$ das folgende Zyklus in \mathbb{C} :

$$\gamma_1 := \{ z \in \mathbb{C} \mid |z - i/2| = 1 \}; \ \gamma_2 := \{ z \in \mathbb{C} \mid |z - 1/2| = 1 \}.$$

Es wird vorausgesetzt, die Kreise γ_1, γ_2 sind positiv orientiert.

Berechnen Sie:

$$\int_{\Gamma} \left(\frac{1}{\sin(\pi z)} + \sin\left(\frac{1}{z-i}\right) \right) dz.$$

Sind die Funktionen $\frac{1}{\sin(\pi z)}$ und $\sin\left(\frac{1}{z-i}\right)$ meromorph auf \mathbb{C} ?

- 12-5 Sei $f:\mathbb{C}\to\mathbb{C}$ eine holomorphe Funktion, und es gebe Konstanten M,R>0, so dass für alle $z\in\mathbb{C}$ mit |z|>R gilt: $|f(z)|\leq M|z|$. Zeigen Sie: f ist eine affine Funktion (d.h. f(z)=az+b, mit $a,b\in\mathbb{C}$ konstanten).
- 12-6 Es sei $G := \{z \in \mathbb{C} \mid z \neq ki, k \geq 0\}$, und $f : G \to \mathbb{C}$ der auf G definierte (holomorphe) Zweig des Logarithmus mit $f(1) = 4\pi i$. Bestimmen Sie f(-1).
- 12-7 Bestimmen Sie den Wert des uneigentlichen Integrals

$$\int_{-\infty}^{\infty} \frac{\sin x \, dx}{x - \pi/4} := \int_{\pi/4}^{\infty} \frac{\sin x \, dx}{x - \pi/4} + \int_{-\infty}^{\pi/4} \frac{\sin x \, dx}{x - \pi/4}.$$