Analysis 1

Wintersemester 2015/16 Aufgaben, Blatt Nr. 4

Abgabe: Dienstag, 17.11. vor der Vorlesung, bitte Namen, Matrikelnummer und Übungsgruppenzeit angeben!

4-1 Sei $(a_n)_{n\in\mathbb{N}}$ eine reelle Zahlenfolge mit $a_n\neq 0$ für alle n.

Zeigen Sie: Wenn es ein $N \in \mathbb{N}$ und ein $q \in \mathbb{R}$ mit 0 < q < 1 gibt, so dass

 $\left| \frac{a_{n+1}}{a_n} \right| < q$

für alle $n \geq N$ gilt, dann ist (a_n) eine Nullfolge (d.h. $\lim_{m\to\infty} a_n = 0$.).

4-2 Sei $(a_n)_{n\in\mathbb{N}}$ eine Nullfolge positiver reeller Zahlen. Zeigen Sie, dass es zu jedem $\epsilon>0$ eine Teilfolge $(a_{n_k})_{k\in\mathbb{N}}$ gibt, so dass

$$\sum_{k=1}^{\infty} a_{n_k} < \epsilon,$$

(d.h. die Reihe $s_m=\sum_{k=1}^m a_{n_k}$ konvergiert mit einem Grenzwert $\sum_{k=1}^\infty a_{n_k}<\epsilon.)$

4-3 Zeigen Sie: Wenn $(a_n)_{n\in\mathbb{N}}$ eine beschränkte Folge ist mit

$$2a_n \le a_{n-1} + a_{n+1}$$

für alle $n \in \mathbb{N}$, dann ist die Folge $b_n = a_{n+1} - a_n$ eine Nullfolge.

4-4 Es sind zwei Folgen $(a_n)_{n \in \mathbb{N}}, (b_n)_{n \in \mathbb{N}}$ durch $0 < a_1 < b_1$ und

$$a_{n+1} = \frac{a_n + b_n}{2}$$
; $b_{n+1} = \frac{2a_n b_n}{a_n + b_n}$

für $n \geq 1$ gegeben. Untersuchen Sie die Folgen auf Konvergenz und bestimmen Sie gegebenenfalls den Grenzwert.